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ABSTRACT
Iceberg queries, commonly used for decision support, find groups
whose aggregate values are above or below a threshold. In practice,
iceberg queries are often posed over complex joins that are expen-
sive to evaluate. This paper proposes a framework for combining
a number of techniques—a-priori, memoization, and pruning—to
optimize iceberg queries with complex joins. A-priori pushes par-
tial GROUP BY and HAVING condition before a join to reduce its in-
put size. Memoization caches and reuses join computation results.
Pruning uses cached results to infer that certain tuples cannot con-
tribute to the final query result, and short-circuits join computation.
We formally derive conditions for correctly applying these tech-
niques. Our practical rewrite algorithm produces highly efficient
SQL that can exploit combinations of optimization opportunities in
ways previously not possible. We evaluate our PostgreSQL-based
implementation experimentally and show that it outperforms both
baseline PostgreSQL and a commercial database system.

1 Introduction
Iceberg queries, first introduced by Fang et al. [8], are an important
class of queries in OLAP and data mining. These queries perform
grouping of data and return only those groups who aggregate val-
ues pass a given threshold. The name “iceberg” follows from the
observation that while the number of candidate groups is poten-
tially huge (like an iceberg), the number of groups in the final an-
swer tends to be much smaller (like the tip of the iceberg), because
the threshold is typically very selective. Therefore, the strategy of
first computing the entire set of candidate groups and then filtering
them may not work well. Below is a simple example iceberg query
from [8], which finds popular items and regions where the revenue
in the region from the item is at least one million dollars:

SELECT partKey, region, SUM(numSales * price)
FROM LineItem
GROUP BY partKey, region
HAVING SUM(numSales * price) >= 1000000;

∗This work was supported in part by NSF awards IIS-1408846 and IIS-
1552538, and a Google Faculty Research Award.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064053

Many iceberg queries that arise in practice involve joins between
two or more tables. One example that has been studied in depth
is market basket or frequent itemset queries, which find subsets of
items purchased together more than some number of times. List-
ing 1 shows one such query that finds pairs of items that appear to-
gether in at least 20 baskets. Here, table Basket(bid, item) stores
the items contained in each basket (identified by bid), one item per
record.

SELECT i1.item, i2.item
FROM Basket i1, Basket i2
WHERE i1.bid = i2.bid
GROUP BY i1.item, i2.item HAVING COUNT(*) >= 20;

Listing 1: A market basket query.

Other iceberg queries can involve more complex inequality joins.
For example, k-skyband queries find objects that are dominated by
no more than k others. These queries are a natural generalization
of the popular skyline queries (which are equivalent to 0-skyband
queries). Listing 2 shows an example k-skyband query over a table
Object(id, x, y), where x and y represent numerical dimensions
of interest, such as price, rating, availability, etc.

SELECT L.id, COUNT(*)
FROM Object L, Object R
WHERE L.x<=R.x AND L.y<=R.y AND (L.x<R.x OR L.y<R.y)
GROUP BY L.id
HAVING COUNT(*) <= 50;

Listing 2: A k-skyband query.

Query processing techniques for iceberg queries have been stud-
ied over the last two decades, both for general iceberg queries and
for specific classes like market basket or k-skyband queries. Work
targeting general iceberg queries, such as [8], focuses on GROUP BY
and HAVING, but not on optimizing joins before grouping. Work
targeting specific classes of iceberg queries focuses on develop-
ing efficient but specialized techniques. For example, the seminal
work in [3] developed the Apriori algorithm for association rule
mining (a generalization of market baskets), based on the follow-
ing observation: if a set of items T is frequent (appears together
in k baskets), then all T ′ ⊆ T are frequent as well. Applying
this observation to the query in Listing 1, we see that we can re-
duce the Basket before the join by filtering out those items that
appear fewer than 20 times by themselves. For k-skyband or sky-
line queries, transitivity of dominance relationships has often been
exploited for optimization: if a dominates b and b dominates c, then
a dominates c. Applying this observation to the query in Listing 2,
we note that if c is dominated by b and b is dominated by more than
50 other objects, then c must be dominated by more 50 others as
well, so we can safely eliminate it from further consideration.
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SELECT S1.id, S1.attr, S2.attr, COUNT(*)
FROM Product S1, Product S2, Product T1, Product T2
WHERE S1.id = S2.id AND T1.id = T2.id
AND S1.category = T1.category
AND T1.attr = S1.attr AND T2.attr = S2.attr
AND T1.val > S1.val AND T2.val > S2.val
GROUP BY S1.id, S1.attr, S2.attr
HAVING COUNT(*) >= 10;

Listing 3: An iceberg query for identifying unexciting products.

While there is no shortage of techniques for processing iceberg
queries, existing approaches have several notable limitations. First
and overall, there is no general framework for optimizing iceberg
queries over complex joins: techniques are either highly special-
ized (e.g., for market baskets and skylines) or fail to optimize the
join part of query processing, which can be exceedingly expensive
even for a small result set. Second, the specialized techniques are
difficult to generalize to larger classes of iceberg queries, mostly
due to the lack of formal procedures for verifying their applicability
to general SQL queries. In practice, users often write SQL queries
that are variants of those targeted by specialized techniques, and
will be unable to benefit from automatic optimization. Third, there
are interesting opportunities for generalizing and combining spe-
cialized techniques within a single iceberg query. The following
examples illustrate the last two points above.

Example 1. Consider a table Product(id, category, attr, val)
storing information about products carried by a store. Here, id
identifies the product, category denotes its category (with func-
tional dependency id → category), and (attr, val) is a key-
value pair storing the value of some relevant attribute for the prod-
uct; e.g., (’units sold’, 5000) means 5000 of this product have
been sold, while (’release year’, 2015) means this product was
released in 2015. A product in general is associated with multiple
attributes and therefore multiple rows in the table.

An analyst may wish to compare products in the same categories
(e.g., laptops or lawn mowers) to identify those are “overshad-
owed” by others and therefore can be discontinued. To this end,
she poses the following question: Is there a product that is strictly
dominated by at least 10 others in the same category along two di-
mensions? Show such products and the pairs of dimensions. List-
ing 3 shows this iceberg query in SQL, which involves a four-way
self-join: S1 and S2 correspond to two attributes of a product p1

of interest, while T1 and T2 correspond to matching attributes of a
product p2 being compared with p1. The query counts the number
of p2’s with strictly larger values than p1 for both attributes.

The first observation is that this query is fairly complicated; we
have already simplified it for brevity of discussion, but in reality
Product may itself be a join, direction of dominance may depend
on the attributes, and the query may additionally enforce unique-
ness of attribute pairs (up to order), etc. Intuitively, the query
has substructures resembling both market basket and k-skyband
queries, but it does not fit either template exactly. Existing ap-
proaches cannot recognize the applicability of specialized tech-
niques on this query.

Interestingly, this query is simultaneously amenable to optimiza-
tions for both market basket and k-skyband queries. 1) If a product
p is strictly dominated by fewer than 10 others on one attribute a,
it must be strictly dominated by fewer than 10 others on both a and
b for any other attribute b. Hence, the row associated with (p, a)
can then be safely discarded from Product upfront so that the join
is performed on a smaller table (analogous to Apriori). 2) If a
product p1 is strictly dominated by fewer than 10 others on two at-
tributes, and if product p2 is no worse than p1 on both attributes,

WITH pair AS
(SELECT s1.pid AS pid1, s2.pid AS pid2,

AVG(s1.hits) as hits1, AVG(s1.hruns) AS hruns1,
AVG(s2.hits) as hits2, AVG(s2.hruns) AS hruns2

FROM Score s1, Score s2
WHERE s1.teamid = s2.teamid AND s1.year = s2.year
AND s1.round = s2.round AND s1.pid < s2.pid
GROUP BY s1.pid, s2.pid
HAVING COUNT(*) >= 3)

SELECT L.id1, L.id2, COUNT(*)
FROM pair L, pair R
WHERE R.hits1 >= L.hits1 AND R.hruns1 >= L.hruns1
AND R.hits2 >= L.hits2 AND R.hruns2 >= L.hruns2

AND (R.hits1 > L.hits1 OR R.hruns1 > L.hruns1
OR R.hits2 > L.hits2 OR R.hruns2 > L.hruns2)

GROUP BY L.id1, L.id2
HAVING COUNT(*) <= 20;

Listing 4: An iceberg query for finding notable player “pairs.”

then p2 must be strictly dominated by fewer than 10 others on these
attributes as well. Therefore, no further computation is needed for
p2. Existing approaches cannot detect and apply the combination
of both optimizations.

Example 2. We have been working with the athletics department
at our university to help our sports teams find timely statistics, in-
teresting facts, and noteworthy records on their websites and so-
cial media. As an example in baseball (see [1] for a concrete in-
stance cited in media), we want to identify players who score sig-
nificant runs as a pair. Listing 4 shows the query in SQL. Here, ta-
ble Score(pid, year, round, teamid, hit, hrun) stores, for each
year, round, and player (identified by pid, playing for teamid),
the number of batting hits (hit) and home runs (hrun). The query
finds pairs of players who played at least 3 years together, and are
dominated by no more than 20 other pairs. Here, dominance (or
weak dominance) means performing no worse on all four dimen-
sions (two per player) and strictly better on at least one of them
(note the difference from strong dominance in Example 1).

This query also benefits from optimizations for both market bas-
ket and k-skyband queries, but in a different way from the query in
Listing 3. Here, the query consists of two blocks, each of which is
an iceberg query by itself and benefits from one of the two types of
optimizations (in this sense it is easier to optimize than Listing 3).

During a sports season, we issue a wide variety of complex ice-
berg queries such as the one above on one or more tables stored
in a database. We have found existing database systems to be frus-
tratingly slow for such queries, preventing any sort of interactive
experience. On the other hand, while it is possible to code spe-
cialized algorithms for each type of analysis or discovery task, do-
ing so requires a great deal of effort and expertise because of the
great variety of these tasks. We have also found hand-coding spe-
cialized algorithms to be error-prone, because even slight changes
in the query condition (e.g., strong vs. weak dominance) can in
corner cases break properties that hand-coded optimizations rely
on. Thus, we need a better DBMS-based solution that can deliver
acceptable performance automatically (even if it is not as fast as
hand-coded solutions) for general and potentially complex iceberg
queries expressed in SQL.

Our Contributions In this paper, we develop automated tech-
niques for optimizing iceberg queries with complex joins that ex-
ploit a suite of optimization techniques, thereby addressing the above
limitations of existing approaches. In particular, we use three or-
thogonal and complementary techniques in our optimizations:
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• Generalized a-priori: Motivated by Apriori [3], our general-
ized a-priori technique optimizes an iceberg query with a join
by reducing the size of input tables by first applying the HAVING
constraint to them (if applicable), allowing the original iceberg
query to run on smaller inputs.
• Cache-based pruning: Motivated by the example of exploiting

the properties of dominance for k-skyband query processing, we
generalize the idea of pruning join computation using cached re-
sults of previous computation. We introduce a query operator
called NLJP (Nested-Loop Join with Pruning) that operates in
a nested loop, invoking the inner input query with join attribute
values supplied by each tuple from the outer input query. NLJP
caches results of the inner query by join attribute values, and
for each new outer input tuple, evaluates a pruning predicate
to determine whether the inner query evaluation can be safely
skipped.
• Memoization: With the cache inside the NLJP operator, we also

enable memoization: if multiple outer input tuples supply iden-
tical join attribute values, previously computed and cached re-
sults of the inner query can be looked up from the cache, thereby
avoiding unnecessary computation.

We give formal conditions for applicability of the above tech-
niques that can be automatically verified, and prove their correct-
ness. We show how to apply these techniques automatically using
query rewrite and code generation techniques. Notably, we do not
rely on users to identify optimization opportunities or define prun-
ing techniques. Instead, we analyze SQL queries with the knowl-
edge of the database constraints, and we automatically deduce
pruning predicates for query conditions involving linear equalities
and inequalities using quantifier elimination and Fourier-Motzkin
variable elimination [11] methods. We outline an optimization pro-
cedure that can identify and apply combinations of our optimization
techniques. We implement our techniques in PostgreSQL, and pro-
vide experimental evaluation on representative iceberg query work-
loads with complex join conditions, showing how we outperform
both baseline PostgreSQL and a commercial database system.

2 Related Work
Iceberg queries were first introduced in [8]. They focused on com-
putation of the groups that satisfy the threshold in the HAVING
clause with compact in-memory data structures, without requiring
materialization of relation R on which the group-by is performed,
and avoiding techniques like hashing or sorting the relation R that
would require such materialization. Instead, they proposed a suite
of techniques (defer-count, multi-level, multi-stage) that
aim to reduce false positives (groups that do not satisfy the HAVING
condition but are returned) as much as possible without returning
any false negatives; the false positives are subsequently eliminated
by scanning the relation R. Since these techniques do not require
R to be materialized, R can be the result of a join as long as R
can be generated in one pass. However, the techniques focus on
computing the groups satisfying the threshold, and do not focus
on optimizing the joins before these groups are computed. Our
work differs by considering the entire query processing pipeline,
from detection of scope of optimizations for joins, and for general
HAVING conditions (COUNT, SUM, MIN, MAX with both ≤ and ≥), to
actually implementing these techniques using a DBMS.

Iceberg queries have been extended to data cubes (GROUP BY on
all possible subsets of the grouping attributes) by Beyer and Ra-
makrishnan [5], where the goal is to output the groups in the cube
that satisfy a HAVING condition like COUNT(*) >= k. The ap-
proach in [5] exploits a bottom-up pass on the data cube, e.g., if a

group on (AB) does not satisfy the count threshold, then groups on
(ABC) or (ABCD) cannot satisfy the count threshold either (sim-
ilar concept as in Apriori [3]). Therefore unlike the standard data
cube algorithms that do top-down passes (e.g., computes (ABC)
from (ABCD)), it uses a bottom-up pass for pruning groups. Since
we focus on standard group-by queries without cube, all our sub-
sets are of the same size and these ideas do not directly apply to our
problem. Shou et al. [17] extends the concept of iceberg queries to
iceberg distance joins for spatial queries, returning object pairs that
are within a maximum distance with one pair occurring at a high
frequency. Query flocks [18] generalize associate-rule mining to a
datalog-based syntax with a monotone filter. We use similar ideas
borrowed from Apriori [3], but we additionally consider pruning
and memoization techniques in the one framework where all these
techniques can apply.

There are other query optimization techniques with a similar fla-
vor to ours but none match our optimizations. The eager aggrega-
tion and lazy aggregation technique proposed by Yan and Larson
[23] moves group-by operations up and down a query tree, includ-
ing in some cases through join operations, which was described
in an earlier work [22]. The extended version of [22] describes
necessary and sufficient conditions for pushing the having clause
through a join as well as group by [21]. The assumptions in [21]
is that there are two non-empty tables Rd, Ru participating in the
join where Rd contains the aggregate functions in both the HAVING
and σ clauses, and Ru does not (the group by attributes can belong
to both). The paper gives conditions under which the query can
be rewritten to an equivalent query that replaces Rd by R′d, where
the GROUP BY and HAVING clauses are pushed to Rd (it also dis-
tributes selection conditions accordingly). Since [21] does not ap-
ply the HAVING condition after join, and since they obtain the same
set of conditions irrespective of whether the HAVING condition is
monotone or anti-monotone, their conditions are much more re-
stricted than ours. In particular, the conditions for a-priori derived
in our work differ from [21] in two ways: (i) we do not assume
any constraint on the aggregate function in the σ clause, (ii) the
conditions obtained in [21] apply to the join of Rd, Ru and are of
the form GAd, GAu → GA+

d and GA+
d , GAu → RowId(Ru),

where GAd, GAu are grouping attributes from Rd, Ru in the final
query, and GA+

d ⊇ GAd also includes additional columns from
Rd needed to apply selection after join. In contrast, the conditions
obtained in our work apply to individual tables, and therefore are
much simpler to check given the information on functional depen-
dencies that hold in individual relations (and therefore less restric-
tive as well).

The query rewriting technique called magic sets [4, 12] was in-
troduced in SQL in 1985-90s. The technique generates a set of aux-
iliary views that have a series of bindings restricting the table (from
the initial query), resulting in a view that produces no irrelevant tu-
ples in the subsequent join. Later, [16] completed the magic sets
integration by formalizing the technique in a cost-based scenario,
allowing the technique to mix with other optimization strategies.
The difference between magic sets and our techniques is that we
prune tuples before reaching the join by inferring the HAVING con-
dition using only partial groups; magic sets technique does not do
this.

Optimizations for iceberg queries have been studied for specific
applications like market basket queries and k-skyband queries as
discussed in the introduction. We generalize the conditions used
in the Apriori algorithm of [3] in our work. Sarawagi et al. [15]
discussed the problem of expressing association rule mining in the
form of SQL queries in a DBMS. Ng et al. [13] studied mining and
pruning optimizations for constrained association rules in the con-
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SELECT GL, GR, Λ
FROM L, R
WHERE Θ
GROUP BY GL, GR

HAVING Φ;

Listing 5: Generic single-block iceberg query Q.

text of exploratory association mining. They defined constrained
association queries of the form {(S1, S2)|C}, where C is a con-
straint (e.g., predicates allowed in the HAVING clause) on two sub-
sets S1, S2 denoting the pairs of subsets that are of interest. Us-
ing optimizations based on anti-monotonicity (like Apriori) and
succinctness of the constraints, they give efficient algorithms for
obtaining constrained frequent sets. Although we use the a-priori
techniques (both for monotone and anti-monotone conditions), we
focus not on outputting association rules, but instead on using these
optimizations for handling iceberg queries with complex joins.

Skyline queries have been studied in the context of outputting
pareto optimal objects (not dominated by any other object on all
dimensions); in the context of databases, the result consists of in-
put tuples for which there is no input tuple having better or equal
values in all attributes, and a better value in at least one attribute.
The concept of k-dominant skyline was studied by Chan et al. [6],
which relaxes the dominance on all d dimensions to any subset of
size k. The survey by Chomicki et al. [7] describes several com-
mon algorithmic techniques for skyline queries. The k-skyband
query [14] generalizes skyline queries (for skyline k = 0). One
of the techniques commonly used in skyline or skyband queries is
transitivity: if t1 dominates t2 which in turn dominates t3, then t1
dominates t3. This property is often used for pruning in skyline al-
gorithms. We generalize such pruning techniques for arbitrary join
predicates involving inequalities, by automatically inferring them
and using them to optimize query execution.

Generalized pruning techniques have been used in the setting of
constraint satisfaction. In a database setting, Searchlight [10] in-
tegrated constraint satisfaction with a column-store DBMS, and
heavily relied on both pruning and parallelism. However, their
technique considers simpler, well-defined constraints, where our
techniques are more general. Perada [19] has a similar flavor but
provides a flexible framework for pruning, however the pruning
predicates must be manually specified.

To the best of our knowledge, we provide the first framework for
evaluating general iceberg queries with complex joins that com-
bines multiple optimization techniques of a-priori, pruning, and
memoization.

3 Preliminaries
In this section we describe some concepts and notations that are
used in the rest of the paper. For a relation instance R, we denote
the number of tuples in R by |R|. For an attribute A of R, dom(A)
denotes the domain of A; adom(A) denotes the active domain of A
in the instance R; given a tuple t ∈ R, t.A denotes the value of the
attribute A in t. For a list of attributes Z from R, dom(Z) denotes
the product of the domains of the attributes in Z; adom(Z) denotes
the set of tuples in πZR; given a tuple t ∈ R, t.Z denotes a tuple
formed by t’s values for the attributes in Z.

For simplicity, we shall present our main techniques using a
single-block iceberg query Q joining two relations L and R as
shown in Listing 5. Our techniques extend to subqueries of this
form, and to joins involving more than two relations (discussed in
Appendix D). As seen in examples earlier, many complex iceberg
queries involve self-joins, so in general L and R may refer to the

same underlying relation. Let AL denote the attributes of L and
AR those of R. In case of ambiguity, we prefix attribute references
with the relation (e.g., L.A or R.A). We introduce notations re-
lated to L below; those for R are analogous. Given the query Q,
GL ⊆ AL denotes the (possibly empty) set of GROUP-BY attributes
from L. The join condition is denoted Θ. For simplicity here we
do not consider selection conditions in WHERE that can be evalu-
ated over either L or R alone; our techniques still apply simply by
treating L andR as filtered versions of the respective relations with
selection conditions applied upfront. Let JL ⊆ AL denote L’s join
attributes, i.e., the subset of L’s attributes that are referenced in Θ.
Finally, Φ denotes the HAVING condition, and Λ denotes the list of
output expressions in the SELECT clause.

Example 3. Consider the first block of the “pairs” query (List-
ing 4) that defines pair. Suppose this (sub)query is our Q. Then
L would be s1 and R would be s2, both referring to the same un-
derlying relation Score. Both GL and GR are {pid}, and both JL
and JR are {pid, teamid, round, year} (prefixed with s1 or s2 as
appropriate). Θ is the entire WHERE condition, Φ is COUNT(*) >= 3,
and Λ computes four AVG aggregates for output.

Now consider the second block of the “pairs” query (Listing 4)
as our Q. Both L and R refer to the pair view defined ear-
lier. GL = {id1, id2} and GR = ∅. Both JL and JR are
{hits1, hits2, hruns1, hruns2} (prefixed with L orR as appro-
priate). Θ is the entire WHERE condition, Φ is COUNT(*) <= 20,
and Λ consists of a single aggregate expression COUNT(*).

We call a tuple ` ∈ L an L-tuple and a tuple r ∈ R an R-tuple.
An LR-tuple, denoted 〈`, r〉, is formed by concatenating ` ∈ L
and an r ∈ R. Θ(〈`, r〉) evaluates to either true or false for a
given LR-tuple. The set of LR-tuples in L × R that satisfy Θ is
partitioned into LR-groups according to their values for GL ∪GR.
Let LR(u,v) denote the LR-group with value u for GL and value v
for GR, where u ∈ adom(GL) and v ∈ adom(GR).1 Φ(LR(u,v))
evaluates to either true or false for a given LR-group. For each
LR-group that satisfies Φ, a result tuple is produced; given this
LR-group, each expression in Λ evaluates to an atomic value for
an output attribute. Conceptually, the notions of L-groups and R-
groups are also useful. We partition the set of L-tuples into L-
groups according to their values for GL, and use L(u) to denote the
L-group with value u for GL. Finally, given values w for L’s join
attributes JL, we denote the subset of joining R-tuples by Rnw.
Table 1 summarizes the notations used in this paper.

In this paper we assume that the relational operators π, σ, and 1

are all duplicate-preserving, which is needed for the SQL seman-
tics. We also assume that the subset/superset relationships (⊆ and
⊇) have duplicate semantics as well. For notational convenience,
if a set of attributes A = ∅, we will interpret the (selection or join)
condition A = 〈〉 as simply true.

The HAVING condition Φ can be monotone or anti-monotone
w.r.t. its input. Such monotonicity properties enable us to iden-
tify and apply optimizations safely. We formalize these properties
below and show examples in Table 2.

Definition 1 (Monotone and anti-monotone conditions). Let Φ
be a condition that evaluates to either true or false given a set of
tuples as an input. We call Φ monotone (resp. anti-monotone) if
for all T ⊆ T ′ (resp. T ⊇ T ′) with schema compatible with Φ,
Φ(T )⇒ Φ(T ′).

1Note that in case GL = ∅ (the case for GR is analogous), an LR-group
can be identified simply by its value v for GR, and we would denote that
group by LR(〈〉,v).
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Notation Meaning
JL join attributes from L
GL GROUP-BY attributes from L

L(u) L-group identified by u ∈ adom(GL);
i.e., σGL=uL

LR(u,v) LR-group identified by u ∈ adom(GL) and v ∈ adom(GR);
i.e., σGL=u∧ GR=v(L 1Θ R)

Rnw R-tuples joining with w ∈ dom(JL);
i.e., πAR ({w}〉 1Θ R), where {w} denotes a relation with
attributes JL and a single tuple specified by w

Table 1: Notations used in the paper, defined in the context of a query Q

over relations L and R, defined in Listing 5. Notations for R are omitted as
they are analogous to those for L.

Monotone Anti-monotone
COUNT(*) >= c COUNT(*) <= c
COUNT(A) >= c COUNT(A) <= c

SUM(A) >= c (if dom(A) ⊆ R≥0) SUM(A) <= c (if dom(A) ⊆ R≥0)
MAX(A) >= c MAX(A) <= c
MIN(A) >= c MIN(A) <= c

COUNT(DISTINCT A) >= c COUNT(DISTINCT A) <= c

Table 2: Examples of monotone and anti-monotone HAVING conditions.
A represents an attribute and c represents a constant.

4 Generalized A-Priori Techniques
In this section we discuss the generalized a-priori technique, i.e.,
when we can reduce the cost of a join by pushing down the condi-
tion in the HAVING clause to individual relations to select a subset
of tuples from either or both relations before we execute the origi-
nal iceberg query. The goal of generalized a-priori technique is to
achieve this reduction in the size of the input relations by safely
removing tuples that are guaranteed to not to contribute to the final
answers in the original iceberg query.

The a-priori technique was proposed in the seminal market bas-
ket analysis paper [3] to find frequent itemsets. The frequent item-
set problem aims to find sets of elements that co-occur in a set of
baskets at least τ times where τ is a threshold. The key observation
is that, if a set of elements co-occur in τ baskets, then any subset of
these elements must also co-occur in τ baskets, and in particular,
any individual element must also appear in at least τ baskets, which
helps safely discard item or itemsets that cannot belong to the final
answers. This idea was revisited in the Query Flocks paper [18] by
focusing on pair of items as the itemset instead of arbitrary subsets
(see Listing 1). Basically, the HAVING clause in Listing 1 can be
applied to the table Basket to safely prune the items of individual
frequency lower than 20, which can never appear in frequent item-
set pairs. This reduces the cost of the join since now the self-join is
performed on a subset of tuples that can be much smaller than the
original Basket relation.

Although the above optimization is intuitive for the specific fre-
quent itemset problem, there has not been a study of utilizing this
idea for query optimization in general. The traditional query opti-
mizers apply the HAVING clause after performing the grouping, and
typically attempt to push the selection conditions before grouping
or joins after grouping, but do not attempt to prune individual ta-
bles based on the having condition. Optimization using pushing
HAVING condition prior to the join was studied by Yan and Larson
[23] (see Section 2). However, since they do not execute the orig-
inal query again with the HAVING condition on the reduced rela-
tions, and do not exploit the monotonicity/anti-monotonicity prop-
erties of the HAVING conditions, certain constraints on the input
query have to be applied; further, the constraints obtained are more
restrictive and apply to the table obtained by joining L and R. In-
stead, our goal in this section is to derive constraints on individual
relations L or R that are easier to verify. These constraints ex-
ploit the monotonicity/anti-monotonicity properties of the HAVING

condition Φ and allow us to safely apply a-priori technique to indi-
vidual tables for general iceberg queries as shown in Listing 5.

4.1 Safe A-Priori Technique
Consider the generic query Q in Listing 5. Suppose the HAVING
condition Φ is applicable to L: i.e., all attributes in Φ are from L,
and *, like in COUNT(*), is also allowed. The (generalized) a-priori
technique replaces L in Q with the following “reduced” relation
L′ ⊆ L:

L′ = SELECT * FROM L WHERE GL IN
(SELECT GL FROM L GROUP BY GL HAVING Φ)

We call the subquery following IN a reducer for L. If Φ is applica-
ble to R, the technique can similarly apply to obtain R′. While the
HAVING condition inL′ (orR′) is syntactically identical to the orig-
inal Φ, it is evaluated for each group of L-tuples (or R-tuples) as
opposed to each group of LR-tuples. To produce the correct result,
the rewritten query must still retain the final HAVING condition.

Definition 2 (Safe a-priori). Given a query Q in Listing 5 and a
database instance D, we say that the a-priori technique is safe for
relation L (orR) if queryQ′, obtained fromQ by replacing L with
L′ (or R with R′) as defined above, returns the result as Q on D.

Consider the candidateLR-groups produced by the original query
Q. ReplacingLwithL′ (orRwithR′) effectively discards a subset
of these groups with particular GL (or GR) values, while leaving
other groups intact. Hence, to guarantee safety, it suffices to check
that no LR-group satisfying Φ in Q is discarded by a-priori. For-
mally, the following holds:

Proposition 1. It is safe to apply a-priori to L if Φ is applica-
ble to L and for every candidate LR-group LR(u,v) (where u ∈
adom(GL) and v ∈ adom(GR)), Φ(LR(u,v))⇒ Φ(L(u)). (A sim-
ilar condition holds for R.)

The correctness of the above proposition easily follows from the
observation that L′ discards only those L-groups that fail Φ, which
implies that they cannot contribute to any LR-group that would
eventually satisfy Φ. Next, we study how to check the condition of
Proposition 1 by analyzing the query, and in particular, by exploit-
ing the monotonicity property of its HAVING condition.

4.2 Generic Instance-Based Checks
Proposition 1 requires checking the implication Φ(LR(u,v)) ⇒
Φ(L(u)). Informally, if Φ is monotone, a sufficient condition would
be that LR(u,v) is “contained in” L(u). However, LR-groups and
L-groups have different schemas (even though the same Φ can
be applied to both), so we need a more precise way of describ-
ing this relationship. To this end, we introduce the notion of non-
inflationary queries (and similarly, non-deflationary queries for use
with an anti-monotone Φ).

Definition 3 (Non-inflationary and non-deflationary queries).
Consider query Q in Listing 5 over a given database instance D

with relationsL andR. Q is non-inflationary (resp. non-deflationary)
w.r.t. L in D if for every candidate LR-group LR(u,v) of Q (where
u ∈ adom(GL) and v ∈ adom(GR)),

∀` ∈ L(u) :
∣∣∣σAL=`.ALLR

(u,v)
∣∣∣ ≤ 1 (resp. ≥ 1).

The definition is analogous for R.

In other words, given L(u) and LR(u,v), for a non-inflationary
(resp. non-deflationary) query, each tuple in L(u) maps to at most
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(resp. at least) one tuple in LR(u,v). (In the other direction, every
tuple in LR(u,v) always maps to exactly one tuple in L(u).) It
is worth noting that the non-inflationary condition is weaker than
requiring each L-tuple ` to join with at most one R-tuple overall—
` can join with multiple R-tuples as long as no two joined tuples
belong to the same LR-group after grouping by GL and GR.

Intuitively, a non-inflationary (resp. non-deflationary) Q allows
us to conclude thatL(u) is a “superset” (resp. “subset”) of LR(u,v),
and hence, in conjunction with a monotone (resp. anti-monotone)
Φ, the safe a-priori condition of Proposition 1 can be satisfied.

Theorem 1 (Instance-based safety conditions for generalized
a-priori). Consider queryQ in Listing 5. Given database instance
D, the a-priori technique is safe to apply to L if Φ is applicable to
L, and

• Φ is monotone and Q is non-inflationary w.r.t. L in D, or,

• Φ is anti-monotone and Q is non-deflationary w.r.t. L in D.

Similar conditions hold for R.

Proof. We prove the sufficiency of the first condition (for mono-
tone Φ); the second one (for anti-monotone Φ) follows similarly.

Consider any candidateLR-groupLR(u,v) where u ∈ adom(GL)
and v ∈ adom(GR). By Proposition 1, it suffices to show that
Φ(LR(u,v))⇒ Φ(L(u)). Since Φ is applicable toL, Φ(LR(u,v))⇔
Φ(πALLR

(u,v)), where π is duplicate-preserving. Since Q is non-
inflationary w.r.t. L, by Definition 3, we have L(u) ⊇ πALLR

(u,v),
with duplicate semantics. As Φ is monotone, Φ(πALLR

(u,v)) im-
plies Φ(L(u)), completing the proof.

Example 4. Consider the market basket query (Listing 1). The
HAVING condition COUNT(*) >= 20 is monotone. The query is
non-inflationary: for any i1-tuple, there can be at most one joined
tuple in each candidate i1-i2 group, as there can be at most one
i2-tuple with a given item value in the same basket as i1. Hence,
a-priori is safe for i1 (and analogously for i2).

Similarly, for the first block of the “pairs” query (Listing 4) that
defines pair, the HAVING condition COUNT(*) >= 3 is monotone.
This (sub)query is non-inflationary: each s1-tuple contributes to at
most one joined tuple in each candidate s1-s2 group, because for
any given player identified by s2.pid, there can be at most one s2
tuple with year and round matching those of s1 (not to mention
additional conditions on teamid and pid). Hence, a-priori is safe
for s1 (and analogously for s2).

We note that the conditions in Theorem 1 are “tight” in the sense
that the non-inflationary (resp. non-deflationary) property is neces-
sary for achieving safety for queries with a monotone (resp. anti-
monotone) HAVING condition. The following example illustrates
this point.

Example 5. (Monotone ΦΦΦ) Consider a query over relations
L(GL, JL) and R(JR,OR,GR) with join condition JL = JR and
a monotone HAVING condition COUNT(*) >= 2. Suppose L con-
tains a single tuple 〈u,w〉, and R contains two tuples 〈w, z1, v〉,
〈w, z2, v〉. The query is inflationary since the single L-tuple con-
tributes to two tuples in the same LR-group LR(u,v). Applying
a-priori to L would be erroneous since COUNT(*) >= 2 will dis-
card the single tuple from L, leading to an empty result, whereas
the LR-group LR(u,v) in fact satisfies the HAVING condition and
should be reflected in the correct result.

(Anti-monotone ΦΦΦ) Consider a query over relations L(GL, JL)
and R(JR,GR) with join condition JL = JR and an anti-
monotone HAVING condition COUNT(*) <= 1. Suppose L has two

tuples `1 = 〈u,w1〉 and `2 = 〈u,w2〉, while R has a single tuple
r = 〈w1, v〉. The query is deflationary: among the two tuples in
the L-group L(u), `1 joins with r and contributes to the LR-group
LR(u,v), but `2 does not contribute LR(u,v). Applying a-priori to
L would be erroneous since it will discard both `1 and `2, leading
to an empty result, whereas the LR-group LR(u,v) in fact satisfies
the HAVING condition and should be reflected in the correct result.

4.3 Schema-Based Checks
The generic safety conditions in Theorem 1 may depend on a given
database instance, since non-inflationary and non-deflationary joins
are defined in terms of tuples in the participating relations. In this
section, we develop conditions that rely only on the schema and
functional dependencies (that hold on all instances), which can be
easily applied by a query optimizer.

Theorem 2 (Schema-based safety conditions for generalized a-pri-
ori). Consider query Q in Listing 5. The a-priori technique is safe
to apply to L if Φ is applicable to L, and

• Φ is monotone and GR ∪ J=
R → AR (i.e., GR ∪ J=

R is a
superkey ofR), where J=

R ⊆ JR is the subset ofR’s attributes
involved in equality join predicates in Θ, or,

• Φ is anti-monotone and GL → JL.

Similar conditions hold for R.

Proof. We give the proof for L by showing that if the stated con-
ditions hold, then the corresponding condition in Theorem 1 holds
too; the proof for R is similar.

(Monotone ΦΦΦ) Given GR ∪ J=
R → AR, we need to argue that Q

is non-inflationary w.r.t. L. Assume to the contrary that there exists
a candidate LR-group LR(u,v), an L-tuple ` ∈ L(u), and two R-
tuples r1, r2 such that 〈`, r1〉 ∈ LR(u,v) and 〈`, r2〉 ∈ LR(u,v).
As both 〈`, r1〉 and 〈`, r2〉 are in LR(u,v), r1.GR = r2.GR = v;
furthermore, both join with `, so they must agree on the equality
join attributes, i.e., r1.J=

R = r2.J=
R. From GR ∪ J=

R → AR, we
conclude that r1 and r2 are in fact the same tuple, completing the
proof.

(Anti-monotone ΦΦΦ) Given GL → JL, we need to argue that
the query is non-deflationary w.r.t. L. Consider any candidate
LR-group LR(u,v), which is by definition non-empty. Pick any
〈`0, r0〉 ∈ LR(u,v). For any ` ∈ L(u), `.GL = `0.GL = u, so
by GL → JL, `.JL = `0.JL, meaning that ` also joins with r0.
Therefore 〈`, r0〉 ∈ LR(u,v), completing the proof.

Intuitively, for a monotone Φ, the functional dependency GR ∪
J=
R → AR ensures that for each tuple ` in L-group L(u), and for

each LR-group LR(u,v) that ` can potentially contribute to, `.JL
and v together allow for only one LR-tuple to be associated with `.
(Any additional non-equality join predicates in Θ would not affect
this guarantee.)

For an anti-monotone Φ, the functional dependency GL → JL
ensures that for each tuple ` ∈ L(u), the presence of a tuple in any
LR-group LR(u,v) implies that it shares the same JL values as `,
so ` must contribute to LR(u,v) as well.

Example 6. Consider again the market basket query (Listing 1)
with the monotone HAVING condition. Here L is i1,R is i2, GL =
{i1.item}, GR = {i2.item}, JL = J=

L = {i1.bid}, and
JR = J=

R = {i2.bid}. We have GR∪J=
R = {i2.item, i2.bid},

which is clearly a superkey ofR. Therefore, by Theorem 2, a-priori
is safe for i1 (and analogously for i2).
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Note that if we instead change the query to output infrequent item
pairs using an anti-monotone HAVING condition COUNT(*) <= 20,
a-priori would not be safe for i1 (resp. i2), as the required check
GL → JL (resp. GR → JR), or item → bid, fails (item is not
a key of Basket). Intuitively, we cannot discard a frequent item
because it may still participate in an infrequent pair.

Example 7. Consider two tables Basket(bid, item, did) (where
did identifies the particular discount under which the item was
bought—a basket may contain multiple instances of the same item
bought under different discounts) and Discount(did, rate) (where
rate denotes the rate of the discount). The following query outputs
the discount rates applied for items, for least 25 baskets:

SELECT item, rate
FROM Basket L, Discount R
WHERE L.did = R.did
GROUP BY item, rate
HAVING COUNT(DISTINCT bid) >= 25;

Once again, we have a monotone HAVING condition. JL = J=
L =

{did} = J=
R = JR, GL = {item}, and GR = {rate}.

We can safely apply a-priori to L (Basket), because GR ∪ J=
R

is a superkey of R. However, we cannot safely apply a-priori to R
(Discount), because GL ∪ J=

L is not a superkey of L (the same
item-did can appear in multiple bid-s).

Suppose instead we change the HAVING condition to be anti-
monotone, say COUNT(DISTICT bid) <= 25, and additionally as-
sume that item → did (i.e., only one type of discount can be ap-
plied to given item). Theorem 2 still allows us to apply a-priori
safely to L, although via a different check: GL → JL. Intuitively,
in this case, if an item appears in more than 25 baskets, there is no
need to consider it because it would have the same discount rate
in all these baskets, making it impossible to pass the final HAVING
condition.

Example 8. We revisit the examples in Example 5 used to illus-
trate the tightness of the conditions in Theorem 1, now by applying
Theorem 2.

(Monotone ΦΦΦ) In this example of a query over L(GL, JL) and
R(JR,OR,GR) with a monotone HAVING condition, the functional
dependency GR, JR → AR did not hold because there were two
distinct R-tuples with the same values for GR and JR. Therefore,
we would not apply a-priori to L per Theorem 2.

(Anti-monotone ΦΦΦ) In this example of a query over L(GL, JL)
andR(JR,GR) with an anti-monotone HAVING condition, the func-
tional dependency GL → JL did not hold because there were two
distinct L-tuples with the same GL value but different JL values.
Therefore, we would not apply a-priori to L per Theorem 2.

5 Cache-Based Pruning Techniques
This section discusses our cache-based pruning techniques. Unlike
the generalized a-priori technique discussed in Section 4, which
were applied by SQL rewriting, here we apply pruning at run time
by extending the nested loop join (NLJ) algorithm (we describe
its realization using a new NLJP operator in Section 7). Similar
to a nested loop join, we consider tuples from the outer relation
one at a time. The key idea is that tuples that failed to generate
any final result tuple allow us to potentially “short-circuit” the pro-
cessing of new tuples. Under certain conditions, we can perform a
simple check between the new tuple and a previously processed tu-
ple whose outcome has been cached, which allows us to determine
whether the new tuple has any chance of contributing to the result;
if not, we avoid expensive evaluation involving the inner relation.

C ← ∅ # cache of unpromising join values
T ← ∅ # collection of contributions of the form contrib(`, u, v),

# where ` ∈ L, u ∈ adom(GL), and v ∈ adom(GR)
for each ` in L:

if prune(`, C):
continue

compute contrib(`, `.GL, v) and add toT for each unique v ∈ Rn`.JL
add `.JL to C if `.JL is unpromising

for each partition T [u, v] = {contrib(_, u, v) ∈ T} of T by u, v:
compute and return, if applicable, a result tuple for LR(u,v)

Listing 6: Algorithm template for cache-based pruning for Q in
Listing 5, assuming Φ is applicable to R.

Recall from Section 1 the example on the k-skyband query (List-
ing 2) that illustrates this idea. Suppose we have already processed
a tuple `1 = 〈i1, 10, 10〉 from the outer relation L, which resulted
in a group with COUNT(*) greater than 50, and we need to process
a tuple `2 = 〈i2, 5, 5〉 from L. From the WHERE condition and the
observation that `2.x ≤ `1.x ∧ `2.y ≤ `1.y, we can infer that
any R-tuple that joins with `1 must also join with `2, so `2 must
result in a group with COUNT(*) greater than 50 as well, failing the
HAVING condition. We can therefore prune `2 immediately.

In the following, we give a detailed description of the principle
behind pruning and how to derive pruning conditions automatically.

5.1 Subsumption, Caching, and Safe Pruning
Consider again the generic queryQ in Listing 5, withL as the outer
relation and R as the inner. For pruning to apply, we assume that
the HAVING condition Φ is applicable to R: i.e., all attributes in Φ
are from the inner relation, and * is also allowed.

Pruning involves comparing two L-tuples—one previously pro-
cessed and one to be processed—in terms of their contribution to
the final query result. Since they contribute to the final result by
joining with R-tuples, it is natural to compare the subsets of R-
tuples that they join with respectively. To this end, we introduce
the notion of subsumption below. Since L-tuples with identical
join attribute values always join with the same subset of R-tuples,
we define the subsumption relationship on the JL values rather than
L-tuples themselves.

Definition 4 (Subsumption). Given a database instance D with
relationsL andR, andw,w′ ∈ adom(JL), we say thatw subsumes
w′, denoted w � w′, if Rnw ⊇ Rnw′ ; i.e., the set of R-tuples that
joins with (any L-tuple with JL equal to) w is a superset of those
that joins with w′.

We now clarify what information we cache during execution to
enable subsequent pruning. Since we assume that Φ is applicable
to R, given an L-tuple `, we can test Φ using the subset of R-
tuples joining with `. We then record `.JL in a cache C if `.JL is
unpromising, as defined below:

Definition 5 (Unpromising JLJLJL values). Given a database instance
D with relationsL andR, we say thatw ∈ dom(JL) is unpromising
if ∀v ∈ πGRRnw : ¬Φ(σGR=vRnw); i.e., Φ evaluates to false
for every partition of joining R-tuples by GR. (If GR = ∅, the
condition reduces to ¬Φ(Rnw).)

Listing 6 sketches the algorithm for cache-based pruning. Ba-
sically, for each L-tuple ` that cannot be pruned, it computes `’s
contribution to each LR-group’s (potential) result tuple; in this
process, it also discovers whether `.JL is promising, and if not,
records it in the cache. Finally, all contributions for each LR-
group are considered in computing the associated final result tuple
(if any). We omit unnecessary details for now (Section 7 further de-
scribes its implementation using the NLJP operator), and focus on
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prune(`, C). Intuitively, the fact that a particular w′ ∈ dom(JL) is
unpromising, in conjunction with a subsumption test, may be used
to prune L-tuples. In the simplest case, if there is a one-to-one cor-
respondence between L-tuples and the candidate LR-groups, then
for each ` ∈ L, evaluating Φ on its corresponding LR-group is
equivalent to evaluating Φ on Rn`.JL . For a monotone (or anti-
monotone) Φ, `.JL � w′ (resp. `.JL � w′) would allow us to
conclude that ` joins with a subset (resp. superset) of R-tuples that
join withw′; then, an unpromisingw′ would imply that `.JL is also
unpromising, so ` cannot contribute to the final query result.

Unfortunately, in general there is not a one-to-one correspon-
dence between L-tuples and the candidate LR-groups. Each L-
tuple may in fact contribute to multipleLR-groups (by joining with
R-tuples with different GR values), and each LR-group may in-
clude contributions from multiple L-tuples (with same or different
JL values). We need to be more careful when using unpromising
join attribute values in inferring contribution (or lack therefore) to
the final query result. Therefore, to ensure safe pruning, we develop
additional checks based on the schema and functional dependencies
below.

Theorem 3 (Safe pruning conditions). Suppose Φ is applicable
to R, and the algorithm in Listing 6 correctly computes Q when
prune(`, C) always returns false. Then, the algorithm also com-
putes Q correctly with the following definition for prune(`, C):

• If Φ is monotone and GL → AL (i.e., GL is a superkey of
L), then prune(`, C) ≡ ∃w′ ∈ C : `.JL � w′.

• If Φ is anti-monotone, GL → AL (i.e., GL is a superkey of
L), and GR = ∅ (i.e., no GROUP-BY attributes from R), then
prune(`, C) ≡ ∃w′ ∈ C : `.JL � w′.

A similar algorithm with R in the outer loop is correct when Φ is
applicable to L.

The proof of Theorem 3 is given in Appendix A.

Example 9. Consider again the k-skyband query (Listing 2). The
HAVING condition COUNT(*) <= 50 is anti-monotone and appli-
cable to R. GL = {L.id}, GR = ∅, JL = {L.x, L.y}, and
JR = {R.x, R.y}. Since GL (id) is a key of L (Object), we can
safely applying cache-based pruning for L by Theorem 3.

Intuitively, when Φ is monotone and GL is a superkey of L, ev-
ery LR-group LR(u,v) can receive contribution from only a single
L-tuple (namely the one with value u for GL). Therefore, the LR-
groups that ` ∈ L contributes to essentially form a partitioning of
Rn`.JL by GR. If `.JL � w′, we have Rn`.JL ⊆ Rnw′ , and the
subset relationship must also hold for every pair of corresponding
Rn`.JL and Rnw′ partitions. Since none of the Rnw′ partitions
satisfies Φ, neither can any partition for ` because of monotonicity.
Hence ` does not contribute to the final result.

On the other hand, when Φ is anti-monotone, GR = ∅ implies
that each ` ∈ L contributes to single LR-group LR(`.GL,〈〉); more-
over, GL is a superkey of L, so this single LR-group receives con-
tribution from only `, and its contents are essentially Rn`.JL . If
`.JL � w′, we have Rn`.JL ⊇ Rnw′ . Since Rnw′ fails Φ, so does
Rn`.JL because of anti-monotonicity. Hence ` does not contribute
to the final result.

The above arguments show that prune(`, C) of Theorem 3 avoids
false negatives. We also argue that it avoids false positives, i.e.,
pruning will not introduce incorrect result tuples. In general, spuri-
ous result tuples may result if multiple L-tuples contribute to the
same LR-group. For example, suppose Φ is COUNT(*) <= 50

(anti-monotone), and a particular candidate LR-group has contri-
bution from `1 and `2 (with same GL but different JL values). Fur-
ther suppose `1 is pruned (because we can infer from C that `1.JL
would generate more than 50 tuples for the group), but `2 is pro-
cessed and contributes only 40 to the count. Unless the algorithm
has some way of recording that any LR-group with `1’s contribu-
tion is “infeasible,” it may incorrectly process the LG-group for
output because it sees only `2’s contribution after pruning `1. The-
orem 3 avoids false positives by requiring GL to be a superkey ofL:
in that case, every LR-group is associated with a single L-tuple, so
pruning one L-tuple does not affect the computation of LR-groups
associated with other L-tuples.

Note that it is possible to store additional information in C to
enable more general pruning conditions than those of Theorem 3.
For example, if we define a finer-grained notion of “unpromising”
for JL∪GR values, and make C additionally record LR-groups al-
ready deemed infeasible, we may be able to generate more pruning
opportunities. We leave such extensions as future work.

5.2 Automatic Subsumption Test Generation
The last issue remaining in applying Theorem 3 is that prune(`, C)
involves testing subsumption between w,w′ ∈ adom(JL). Def-
inition 4 gives an instance-based definition of w � w′, which
is impractical to evaluate—its evaluation would have necessitated
joining the L-tuple in consideration withR, rendering pruning use-
less. Instead, we should like to develop a test that can be evalu-
ated by examining w and w′ alone, without accessing R. In other
words, we seek a predicate p� involving w and w′ alone, such that
p�(w,w′)⇔ (w � w′ for any database instance D).

Example 10. Consider again the k-skyband query (Listing 2). The
instance-oblivious subsumption predicate is p�(〈x, y〉, 〈x′, y′〉) ≡
(x ≤ x′) ∧ (y ≤ y′). It is easy to see that if this predicate evalu-
ates to true, any R-tuple that joins with JL values of 〈x′, y′〉 in Q
must also join with JL values of 〈x, y〉. Thus, if Rn〈x′,y′〉 does not
satisfy the anti-monotone HAVING condition (COUNT(*) <= 50),
neither can Rn〈x,y〉.

Although the above example for k-skyband query is intuitive and
p� can be easily obtained by hand, for arbitrary join conditions,
manual derivation can be complex and error-prone. In the follow-
ing, we give a formal procedure for obtaining p� automatically
by analyzing the join condition Θ. Given the instance-based def-
inition of subsumption in Definition 4, we consider the instance-
oblivious version ∀wr ∈ dom(JR) : Θ(w,wr)⇒ Θ(w′, wr). Our
goal is to essentially eliminate wr from this predicate, leaving only
w and w′. To this end, we use the Fourier-Motzkin elimination
method [11] (henceforth referred to as FME) for the common case
where Θ involve only linear constraints. Our implementation uses
Mathematica [20], which also handles more complex predicates.
Variable Elimination by FME FME method gives an procedure
to eliminate variables from a system of linear constraints involving
variables from the real domain, e.g.,

x ≥ y + 500 ∧ x+ 10 ≤ z ∧ x ≤ 5y + 100. (1)

FME eliminates variables one by one. Given a variable x to elim-
inate, FME projects the constraints involving x onto the rest of
the system: i) if x is constrained to be equal to an expression in-
volving other variables, we simply replace x the corresponding ex-
pression; ii) if x has both lower bounds (el1, el2, . . . , elm) and up-
per bounds (eu1, eu2, . . . , eun) in terms of other variables, we add
m × n new constraints to the system as eli ≤ euj (or < if either
bound is strict) for all i ∈ [1,m] and j ∈ [1, n]. iii) if x is un-
bounded (i.e., bounded on neither side, or from one side but not the
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other), we simply drop x. This projection procedure forms a new
system with one variable less, but possibly with more constraints,
and the new system is satisfiable if and only if the original system
is satisfiable. For example, eliminating x from Eq. (1) results in
y + 500 ≤ z − 10 ∧ y + 500 ≤ 5y + 100.

This FME step can be repeated as needed. Although the num-
ber of constraints may increase quadratically in each step, we have
found FME to be practical in all scenarios we encountered, as typ-
ical SQL queries involve only a moderate number of variables.
Procedure for Deriving p�p�p� Using FME Starting with ∀wr ∈
dom(JR) : Θ(w′, wr) ⇒ Θ(w,wr), or ∀wr : ¬Θ(w′, wr) ∨
Θ(w,wr), we expand wr , w, and w′ into variables representing
individual attribute values; variables from wr are universally quan-
tified. Assuming that all attributes are from the real domain, we
repeatedly choose and apply one of the following three steps to
eliminate all variables from wr , while preserving those from w and
w′. The order of application is unimportant; any applicable step
can be chosen.

(UE) Elimination of universal quantifiers: Replace ∀x θ by¬∃x¬θ.

(DE) Elimination of disjunction: Replace ∃x (θ1∨θ2) by (∃x1 θ1)∨
(∃x2 θ2) by renaming variable x to x1 in θ1, and to x2 in θ2.

(EE) Elimination of existential quantifiers: Given a formula in
prenex normal form (where all quantifiers precede a quantifier-
free formula) Q1x1 · · ·Qpxp ∃x θ, where θ only involves
conjunction over linear constraints, project it to equivalent
Q1x1 · · ·Qpxp θ

′, where x /∈ θ′, by eliminating variable x
from θ using the FME method described above.

Example 11. Consider again the k-skyband query (Listing 2). We
illustrate the above algorithm for deriving p� for a simplified join
condition L.x<R.x AND L.y<R.y. The derivation for the original
join condition is more tedious, and we include it for completeness
in Appendix B.

We start from ∀xr∀yr : (x′ < xr ∧ y′ < yr)⇒ (x < xr ∧ y <
yr), where wr = 〈xr, yr〉, w = 〈x, y〉, and w′ = 〈x′, y′〉. We
have

∀xr∀yr
(
¬(x′ < xr ∧ y′ < yr) ∨ (x < xr ∧ y < yr)

)
UE≡ ¬

[
∃xr∃yr

(
(x′ < xr ∧ y′ < yr) ∧ ¬(x < xr ∧ y < yr)

)]
≡ ¬

[
∃xr∃yr

(
x′ < xr ∧ y′ < yr ∧ (x ≥ xr ∨ y ≥ yr)

)]
DE≡ ¬

[
∃xr

[ (
∃yr1

(
x′ < xr ∧ y′ < yr1 ∧ x ≥ xr

))
∨(

∃yr2

(
x′ < xr ∧ y′ < yr2 ∧ y ≥ yr2

)) ]]
EE≡ ¬

[
∃xr

[(
x′ < xr ∧ x ≥ xr

)
∨
(
x′ < xr ∧ y′ < y

)]]
DE≡ ¬

[ (
∃xr1

(
x′ < xr1 ∧ x ≥ xr1

))
∨(

∃xr2

(
x′ < xr2 ∧ y′ < y

)) ]
EE≡ ¬

[
(x′ < x) ∨ (y′ < y)

]
≡ (x ≤ x′) ∧ (y ≤ y′).

Since Φ for this query is anti-monotone, prune(`, C) ≡ ∃〈x′, y′〉 ∈
C : 〈`.x, `.y〉 � 〈x′, y′〉, which simplifies to ∃〈x′, y′〉 ∈ C : (`.x ≤
x′) ∧ (`.y ≤ y′).

6 Memoization Techniques
Memoization is an idea that builds upon the classic semijoin-based
evaluation techniques for conjunctive queries, but also considers
grouping and aggregation in SQL queries. As an example, again
consider the k-skyband query in Listing 2. Here, each L-tuple `

leads to one potential candidate LR-group. Both the HAVING con-
dition Φ and SELECT expressions Λ for this LR-group can be eval-
uated over the joining R-tuples Rn(`.x,`.y). These results depend
only on the join attribute values (`.x, `.y), and can be memoized
and keyed on such values. Subsequent evaluations involving the
same join attribute values can simply reuse the memoized results.

In our implementation described in Section 7, we support run-
time memoization using a cache in our new NLJP operator based on
nested-loop execution. Recall from Section 5 that we use a cache
C to record join attribute values that do not contribute to the final
query result, for the purpose of pruning. To support memoization,
we augment C to record also the results (or useful intermediate re-
sults) of evaluating Φ and Λ, so that we can use them in subsequent
iterations if the same join attribute values are encountered.

Currently, our implementation applies memoization when the
following conditions hold: GR = ∅, Φ is applicable to R, all
aggregates in Λ only involve attributes in R or *, and finally, all
aggregates in Φ and Λ are algebraic [9] unless GL → AL. The
cache records the results of all aggregate subexpressions in Φ and
Λ, keyed by JL values. We note that if GL → AL does not hold,
then the results of Φ and Λ over an LR-group must be computed
by combining multiple cached partial aggregate results (hence the
requirement on algebraic aggregates); see Appendix C for more de-
tails. Additionally, we check if JL → AL; if yes, we do not enable
memoization even though it is safe to apply, because in this case
the JL values will be distinct across L-tuples and memoization will
not be beneficial.

An alternative method of applying memoization, without rely-
ing on our NLJP operator, is through static query rewrite. In Ap-
pendix C, we briefly describe this method, together with a relax-
ation of the above conditions for applying memoization, which
does not require GR = ∅. Finally, the cost-effectiveness of memo-
ization depends on how manyL-tuples share the same join attribute
values. In the future, instead we plan to investigate cost-based de-
cisions for whether to enable memoization.

7 Execution and Optimization
In this section we discuss how to integrate the techniques presented
in the previous sections into the execution and optimization of ice-
berg queries by a database system. First, we describe our new phys-
ical operator for memoization and pruning, which we call NLJP
(for Nested-Loop Join with Pruning).

Conceptually, an NLJP operator computes an iceberg queryQ of
the form shown in Listing 5, with L and R both given generally as
subqueries. We call L the driver (or outer) input, which forms the
outer loop of the nested-loop join. The NLJP operator’s behavior is
specified by the following queries (or parameterized queries):

• Binding query QB executes L (with selections and projections
in Q pushed down) and produces a stream of intermediate result
tuples. For each tuple, the binding, or the values for the join
attributes JL, is identified.

• Inner query QR(b) is a select-aggregate query over R parame-
terized by a binding b. QR(b) has selection condition Θ(b, JR)
and computes any aggregates necessary for evaluating Φ and Λ
in Q. Conceptually, during its execution, NLJP considers bind-
ings produced by QB one at a time, evaluates the inner query
when necessary, and builds up a cache C of inner query results
keyed by the bindings.

• Pruning query QC(b′) is a selection query over the cache C
given a binding b′. Using the pruning predicate derived using
the technique in Section 5.2, QP (b′) looks for the existence of
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SELECT id, x, y FROM Object L; -- QB; binding is (x, y)
SELECT COUNT(*) AS payload FROM Object R -- QR(b)
WHERE b.x <= R.x AND b.y <= R.y
AND (b.x < R.x OR b.y < R.y);

SELECT * -- QC(b′)
FROM C(x, y, payload) -- cache
WHERE b′.x <= x AND b′.y <= y
AND payload > 50;

SELECT id, payload -- QP

FROM T(id, x, y, payload) -- concatenated tuples
WHERE payload <= 50;

Listing 7: NLJP-based plan for k-skyband.

a cached result with binding b implying that b′ can be safely
pruned.

• Post-processing query QP computes the final result of Q. NLJP
concatenates each intermediate result tuple ofQB with binding b
(if not pruned) with the result tuple of the corresponding QR(b),
and evaluates Qp over these concatenated tuples. In the simple
case where GL → AL, QP can be computed on a per-tuple
basis; in more general casesQP may involve further aggregation
(Appendix C).

For example, for the k-skyband query in Listing 2, the queries spec-
ifying the NLJP operator are shown in Listing 7.

We now sketch out the execution of an NLJP operator. In the fol-
lowing, we assume that both memoization and pruning are enabled
(it is straightforward to turn off either feature if desired).

construct cache C
T ← ∅
for each tB with binding b in the result of QB :

if b in C:
T .append(〈tB , C[b]〉)

else if QC(b) is empty: # cannot be pruned
C[b]← QR(b)
T .append(〈tB , C[b]〉)

return QP (T )

We have implemented the NLJP “operator” in PostgreSQL as a
stored procedure. Our optimization procedure (discussed further in
Appendix D) can be thought of as a pre-compiler that analyzes the
original queryQ and rewrites it as a combination of SQL and stored
procedure code. For each specific instance of the NLJP operator,
the procedure automatically generates the code for its queries, as
well as statements for creating and maintaining the cache, which
is implemented as a PostgreSQL table. One advantage of this ap-
proach is that PostgreSQL optimizer is able to prepare and optimize
these statements in advance, which is especially important for pa-
rameterized statements that will be executed repeatedly at run time,
such as QR, QC , and cache operations.

A number of other features of the NLJP operator are worth not-
ing here. First, we detect simple cases when the post-processing
QP (T ) can be evaluated in an incremental fashion over T , to avoid
materialization of T and allow final result tuples to be returned in
a non-blocking fashion. Second, the binding query QB can option-
ally include an ORDER BY clause to control the order of exploration
in the space of all bindings. We simply leave the ordering unspec-
ified (i.e., whatever ordering PostgreSQL chooses to return the re-
sult tuples ofQB) in this paper, but we plan to consider intelligently
choosing this ordering in the future as it can have a significant im-
pact on pruning effectiveness [19]. Finally, we can outfit the cache
C with a replacement policy (based on the utility of its entries) to
bound its size; we plan to investigate this option as future work.

In Appendix D, we give an optimization procedure to systemati-
cally look for opportunities to apply all our techniques—generalized

a-priori, memoization, and pruning—in an iceberg query involving
multi-way joins. There we also walk through the steps of optimiz-
ing the query in Listing 3 involving a four-way self-join, showing
how we are able to identify and apply both generalized a-priori and
pruning techniques to that same query. However, note that doing
so requires a component of the optimization procedure that infers
functional dependencies that hold in a join result by analyzing the
join predicate and dependencies on the input relations. We do not
yet have a full implementation of this procedure, so the experiments
in Section 8 involving Listing 3 applies only the pruning technique,
but not generalized a-priori. This temporary limitation is not inher-
ent to our optimization framework for iceberg queries.

8 Experiments
All experiments are run on a quad-core 2.8GHz Intel i7 machine
with 16GB memory and 2TB HD, running Microsoft Windows
Server 2012 Datacenter. We compare our PostgreSQL-based im-
plementation with basic PostgreSQL and a commercial database
system, which we refer to as “Vendor A”. Unless otherwise noted,
all tables are given indexes applicable to each query. Parallelism
was enabled by default for Vendor A and for PostgreSQL, with
Vendor A using all 4 cores and PostgreSQL preferring to use 2.
Our implementation does not take any specific advantage of paral-
lelism.

We evaluated our techniques on a representative set of queries in-
volving dataset of season statistics for Major League Baseball [2],
with 3×105 rows, each with a large number of player performance
statistics. Our queries largely follow the templates of k-skyband
(Listing 2), “pairs” (Listing 4), and “unexciting products” (List-
ing 3) queries, but they are cast in the setting of baseball players
and statistics and sometimes contain other variations. In the fol-
lowing, we refer to these queries as skyband, pairs, and complex,
respectively. Complex uses an alternative, “unpivoted” organiza-
tion of the same dataset, where each individual performance statis-
tic is represented as a key-value pair by a row.

8.1 Relative Performance of Approaches
Figure 1 compares the performance of our approach (shown as
“all”) versus PostgreSQL (shown as “base”) and Vendor A on 8
representative queries. For our approach, we also show the per-
formance achieved by enabling only one of our three optimization
techniques—pruning, memoization (shown as “memo”), and gen-
eralized a-priori (shown as “apriori”).
Q1,Q2, andQ3 are two-dimensional skyband queries with vary-

ing maximum thresholds (k) comparing different pairs of attributes
(a); the objects of interests are all seasonal performance records of
players. Q4,Q5,Q6, andQ7 are pairs query (Listing 4) with vary-
ing thresholds (c for the HAVING minimum in the WITH subquery,
and k for the HAVING maximum in the main query) and different
functions for aggregating statistics over time (using either SUM or
AVG in the WITH subquery). In contrast to Q1–Q3, Q8 first com-
putes average player statistics over time before computing the sky-
band, so its objects of interest are players; it also uses a simpler join
condition (L.x < R.x AND L.y < R.y).

From Figure 1, we see that our approach yields a tremendous
speedup—consistently over PostgreSQL and in most cases over
Vendor A—when all optimization techniques are enabled. There
only exceptions were Q7 and Q8, where Vendor A offers slightly
better performance—but keep in mind that Vendor A makes ag-
gressive use of parallelism while our implementation is currently
sequential. As a point reference, in these two cases PostgreSQL
still fares far worse than our approach, which is also PostgreSQL-
based.
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Figure 1: Performance of our approach (with one of or all three optimization techniques enabled) vs. PostgreSQL and Vendor A. Heights of the bars
correspond to running times (normalized against PostgreSQL’s), with actual running times in seconds also shown on top. Note that generalized a-priori does
not apply to Q1, Q2, Q3, and Q8.

Figure 2: Data distributions for two common attribute pairings used in
our experiments.
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Figure 3: Cache sizes (kB) at the end of execution across eight queries.

To study the effectiveness of each our optimization techniques,
we have also experimented with enabling each in isolation, but it
should be noted that in some cases a particular optimization would
not be applicable to a specific query. For highly selective iceberg
queries, pruning can be extremely effective, with a few queries see-
ing more than 300× speedup. While a-priori yields the smallest
isolated speedup, there appears to be a combination effect that is
not entirely linear, so it can be beneficial when used in conjunction
with the other techniques. Memoization, despite being the easiest
optimization to apply, can sometimes provide good speedups (e.g.,
more than 20× for Q1, Q2, and Q3) even by itself; even though
these speedups are not as good as pruning, memoization has the
advantage of being more generally applicable.
Data Distribution It is important to note that data distributions
can vary significantly across attributes and combinations thereof.
Consequently, as we have observed in Figure 1, even two queries
of the same template query running on the same dataset can have
very different performance. For example, Figure 2 shows the data
distributions over two commonly used attribute pairs in our queries.
A skyband query with k = 500, running on the distribution shown
on the left, would return 1.8% of all records, but the same query
running on the distribution on the right would return 3.1% of all
records.
Cache Size Recall that our NLJP operator uses a cache, imple-
mented as a PostgreSQL table. Figure 3 reports the size of this
cache at the end of the execution for the 8 queries above. No cache
is larger than 3,000kB, and most are smaller than 500kB. Mean
cache size is 571kB, with 10, 371 rows on average. It should be
noted, however, that for one query, Q5, the number of rows in the
cache was over 60% of the size of its input table, because of the
(effectively) four-way join and a very large number of unpromising
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Figure 4: Comparison of query execution times for Q1 under different
index configurations.

candidates. While our cache is not constrained by memory because
it is implemented as a PostgreSQL, intelligent cache replacement
policies may still improve performance, and we plan to consider
them as future work.
Use of Indexes Availability of indexes does influence query plans
and performance. As an example, Figure 4 shows the effect of in-
dexes had on PostgreSQL and the PostgreSQL-based implemen-
tation of our approach, with various combination of optimization
techniques turned on. The query is Q1 (recall that generalized a-
priori does not apply). We tested a number of configurations, where
PK stands for the primary-key index on the input table (always
available), BT stands for a secondary B-tree index on attributes
(h, hr) involved in comparison, and CI stands for a primary-key
index on the cache (on the join attribute values in this case), which
is applicable only to our approach. As can be seen in Figure 4,
PostgreSQL is able to leverage BT to gain a 2× speedup from its
PK-only execution. In comparison, with both pruning and mem-
oization on, even the worse case for our approach, with only PK,
offers 64× speedup over PostgreSQL PK+BT. With PK+BT+CI,
we get another 6× speedup. For other queries, we also observe
that BT and CI generally improve performance for all approaches;
hence, results shown in Figure 1 earlier were obtained with both BT
and CT in addition to PK.
Query Plans It is illustrative to examine the query plans of Post-
greSQL and Vendor A for iceberg queries. For the relative sim-
pler skyband queries such as Q1, both PostgreSQL and Vendor A
use indexed nested loop joins, followed by hash-based grouping
and aggregation, and then final filtering by the HAVING condition
(shown in Appendix E for reference). While such plans are reason-
able, they are clearly inferior to our approach, as they fully evaluate
the joins and apply the highly selective HAVING condition only in
the very last step.

For pairs queries, which involve a larger number of joins, we see
more variety in the query plans by PostgreSQL and Vendor A for
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Figure 5: Running times (on a logarithmic scale) of skyband with varying
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Figure 6: Running times (on a logarithmic scale) of complex with varying
thresholds in the HAVING condition.

join processing, although they are still unable to take advantage of
the selective HAVING conditions in any way. Dropping indexes (re-
moving BT) also has the effect of forcing PostgreSQL and Vendor
A to consider more join methods, but doing so generally leads to
less efficient plans.

8.2 Effect of Workload Parameters
We further evaluate our approach when varying workload param-
eters, specifically the threshold used in the HAVING condition and
the input data size. We use a skyband query (analogous to List-
ing 2) and a complex query (analogous to Listing 3). Generalized
a-priori is not applicable to skyband. While complex benefits from
simultaneous application of a-priori and pruning, as explained at
the end of Section 7, we only test pruning and memoization for
complex because of a limitation in our current implementation of
the optimization procedure.

Varying the HAVINGThreshold Figure 5 shows the running times
of skyband on the three systems as we vary the HAVING thresh-
old while keeping the input table size constant at 3 × 105 rows.
Note that the y-axis uses logarithmic scale. Our system, shown
as “Smart-Iceberg” performs significantly better than PostgreSQL
and Vendor A. The query plans and running times of PostgreSQL
and Vendor A are largely independent of the threshold, because
they apply HAVING in the very last step of query processing. On
the other hand, our system is able to exploit the highly selective
nature of iceberg queries. As the HAVING threshold increases, the
iceberg query becomes less “picky,” so the advantage of our system
gradually diminishes. Nonetheless, our system still beats the other
systems even when the threshold is as high as 250, which returns a
very large number of result tuples—a behavior that is typically not
expected or desired for iceberg queries.

Figure 8 shows the complex query running times as we vary the
threshold while fixing the input table size constant at 2× 105 rows
(recall that complex uses the unpivoted version of the table, and we
limit its size to cap the running times of other systems). For Ven-
dor A, we hint its optimizer to consider different join plans; indexed
nested loop join performs the best. Again, our system outperforms
others. The margin is smaller compared with Figure 5 because of
complex’s four-way join (generalized a-priori would have helped).
Also note that as we increase the HAVING threshold, complex be-
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Figure 7: Running times (on a logarithmic scale) of skyband when the
input table size varies.
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Figure 8: Running times (on a logarithmic scale) of complex when the
input table size varies.

comes more “picky,” so the advantage of our system increases,
which is the reverse of the effect observed in Figure 5.
Varying Input Table Size Figures 7 and 8 show the effects of
varying the input table size on skyband and complex, respectively.
The HAVING thresholds are kept constant. As expected, for all sys-
tems, queries take longer to run, but our system generally performs
the best. The only exception is that complex on Vendor A is faster
for the very small input table size of 50,000 rows. Here, the set-
ting of 5000 as the HAVING threshold is such that the query is not
selective at all. Still, our system is only slightly slower in this case.

9 Conclusions
In this paper, we have introduced a framework with a suite of syner-
gistic techniques—generalized a-priori, pruning, and memoization—
for evaluating iceberg queries with complex joins. Given a query
and knowledge of schema, we provide formal checks for safe appli-
cation of these techniques. Importantly, we do not rely on users to
identify optimization opportunities or specify necessary logic (such
as pruning predicates) to apply them. Instead, we show that we can
detect and apply optimizations automatically, thereby significantly
reducing development effort and potential human errors. Experi-
ments demonstrate that our Smart-Iceberg system, implemented us-
ing PostgreSQL, provides substantial performance improvements
over existing database systems for complex iceberg queries, allow-
ing quicker “time to insight” for users.

There are many promising avenues for future work. A necessary
step towards greater adoption of our techniques is the integration
of cost-based optimization into our framework. In addition, while
we have largely considered single-block queries, there is an addi-
tional layer of complexity with nested queries that has been largely
unanalyzed in research on iceberg queries. Within our framework,
order of evaluation and cache replacement policies for NLJP are
also worth further investigation. In conclusion, we believe that ice-
berg queries are a fundamental class of queries used in many appli-
cations, and there exists an intriguing possibility of consolidating
and generalizing specialized techniques that have been developed
for specific problem instances.
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APPENDIX
A Proof of Theorem 3
Before proceeding with the proofs, we introduce some additional
notation. Let A denote the algorithm with prune specified by The-
orem 3, and let A0 denote the baseline algorithm where prune al-
ways returns false. Given a database instance, let T denote the
collection of contributions computed by A, and let T0 denote the
collection of contributions computed by A0. Clearly T ⊆ T0.

Lemma 1. Suppose GL → AL. For any (non-empty) LR-group
LR(u,v), let ` denote the unique L-tuple with `.GL = u. We have:

• πALLR
(u,v) = {`};

• πARLR
(u,v) = σGR=vRn`.JL ;

• T0[u, v] consists of a single contribution contrib(`, u, v).

Proof. Follows directly from the definitions.

Lemma 2. Suppose GL → AL and Φ is applicable to R. If Q
produces a result tuple for LR(u,v), then for any L-tuple ` where
`.GL = u and v ∈ Rn`.JL , we have Φ(σGR=vRn`.JL).

Proof. Since Φ is applicable toR, Φ(LR(u,v))⇔ Φ(πARLR
(u,v)).

Because GL → AL, by Lemma 1, πARLR
(u,v) = σGR=vRn`.JL .

Therefore Φ(σGR=vRn`.JL).

Proof of Theorem 3. First, we show that A produces no false neg-
atives. More precisely, supposeQ (A0) produces an result tuple for
an LR-group LR(u,v) from contributions T0[u, v]. We claim that
A will produce the same result tuple as it will produce these con-
tributions too: i.e., T [u, v] = T0[u, v]. Since T ⊆ T0, it suffices to
show that T0[u, v] ⊆ T [u, v]. Suppose to the contrary there exists
some contrib(`, u, v) ∈ T0[u, v] but contrib(`, u, v) 6∈ T [u, v]. A
must have pruned ` using some unpromising w′ ∈ dom(JL).

(Monotone ΦΦΦ) In this case, GL → AL and `.JL � w′. By
Lemma 2, Φ(σGR=vRn`.JL). Since `.JL � w′, we have
Rn`.JL ⊆ Rnw′ and therefore σGR=vRn`.JL ⊆ σGR=vRnw′ .
As Φ is monotone, Φ(σGR=vRn`.JL) ⇒ Φ(σGR=vRnw′),
contradicting the fact that w′ is unpromising.

(Anti-monotone ΦΦΦ) In this case, GL → AL, GR = ∅ (which
implies v = 〈〉), and `.JL � w′. By Lemma 2, Φ(Rn`.JL).
Since `.JL � w′, we have Rn`.JL ⊇ Rnw′ , and because
Φ is anti-monotone, Φ(Rn`.JL) ⇒ Φ(Rnw′), contradicting
the fact that w′ is unpromising.

Next, we show that A produces no false positives. More pre-
cisely, suppose Q (A0) produces no result tuple for an LR-group
LR(u,v) from contributions T0[u, v]. We claim that A will pro-
duced either all these contributions or none at all: i.e., T [u, v] =
T0[u, v] or T [u, v] = ∅. In the first case of T [u, v] = T0[u, v], A
would behave identically as A0 and not produce a result tuple for
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LR(u,v) (because it fails Φ). In the second case of T [u, v] = ∅, A
would simply ignore LR(u,v), which is again correct.

It remains to be shown why T [u, v] is either T0[u, v] or ∅. If A
never prunes, obviously T = T0 and T [u, v] = T0[u, v]. If A ever
prunes, it must be the case that GL → AL. By Lemma 1, T0[u, v]
consists of a single contribution from a single L-tuple, say `. If A
prunes `, T [u, v] = ∅; otherwise, T [u, v] = T0[u, v]. Hence the
proof is complete.

B Additional Example of Subsumption Test
Generation

Example 12. Consider again the k-skyband query (Listing 2).
We now illustrate the algorithm in Section 5.2 for deriving p�
for the original join condition L.x <= R.x AND L.y <= R.y AND
(L.x < R.x OR L.y < R.y). Let wr = 〈xr, yr〉, w = 〈x, y〉,
and w′ = 〈x′, y′〉. We have:

p� ≡ ∀xr∀yr
[
¬
(
x′ ≤ xr ∧ y′ ≤ yr ∧ (x′ < xr ∨ y′ < yr)

)
∨

(x ≤ xr ∧ y ≤ yr ∧ (x < xr ∨ y < yr))
]

UE≡ ¬
[
∃xr∃yr

[ (
x′ ≤ xr ∧ y′ ≤ yr ∧ (x′ < xr ∨ y′ < yr)

)
∧

¬ (x ≤ xr ∧ y ≤ yr ∧ (x < xr ∨ y < yr))
]

≡ ¬
[
∃xr∃yr

[ (
x′ ≤ xr ∧ y′ ≤ yr ∧ (x′ < xr ∨ y′ < yr)

)
∧

(x > xr ∨ y > yr ∨ (x ≥ xr ∧ y ≥ yr))
]

≡ ¬
[
∃xr∃yr

[ (
(x′ < xr ∧ y′ ≤ yr) ∨ (x′ ≤ xr ∧ ∨y′ < yr)

)
∧ ((x ≥ xr ∨ y > yr) ∧ (x > xr ∨ y ≥ yr))

]]
≡ ¬

[
∃xr∃yr

[
(x′ < xr ∧ y′ ≤ yr) ∧ (x ≥ xr ∨ y > yr)

∧ (x > xr ∨ y ≥ yr)
]
∨[

(x′ ≤ xr ∧ y′ < yr) ∧ (x ≥ xr ∨ y > yr)

∧ (x > xr ∨ y ≥ yr)
]]

DE≡ ¬
[
∃xr

[
∃yr1

[
(x′ < xr ∧ y′ ≤ yr1) ∧ (x ≥ xr ∨ y > yr1)

∧ (x > xr ∨ y ≥ yr1)
]
∨

∃yr2

[
(x′ ≤ xr ∧ y′ < yr2) ∧ (x ≥ xr ∨ y > yr2)

∧ (x > xr ∨ y ≥ yr2)
]]

≡ ¬[∃xr[A ∨B]].

Now, A ≡ ∃yr1

[
(x′ < xr ∧ y′ ≤ yr1) ∧
(x ≥ xr ∨ y > yr1) ∧ (x > xr ∨ y ≥ yr1)

]
≡ ∃yr1

[ (
x′ < xr ∧ y′ ≤ yr1 ∧ x ≥ xr ∧ x > xr

)
∨(

x′ < xr ∧ y′ ≤ yr1 ∧ x ≥ xr ∧ y ≥ yr1

)
∨(

x′ < xr ∧ y′ ≤ yr1 ∧ y > yr1 ∧ x > xr
)
∨(

x′ < xr ∧ y′ ≤ yr1 ∧ y > yr1 ∧ y ≥ yr1

) ]
DE≡ ∃yr11

(
x′ < xr ∧ y′ ≤ yr11 ∧ x > xr

)
∨

∃yr12

(
x′ < xr ∧ y′ ≤ yr12 ∧ x ≥ xr ∧ y ≥ yr12

)
∨

∃yr13

(
x′ < xr ∧ y′ ≤ yr13 ∧ y > yr13 ∧ x > xr

)
∨

∃yr14

(
x′ < xr ∧ y′ ≤ yr14 ∧ y > yr14

)
EE≡

(
x′ < xr ∧ x > xr

)
∨
(
x′ < xr ∧ y′ ≤ y ∧ x ≥ xr

)
∨(

x′ < xr ∧ y′ < y ∧ x > xr
)
∨
(
x′ < xr ∧ y′ < y

)
.

And, B ≡ ∃yr2

[
(x′ < xr ∧ y′ ≤ yr2) ∧

(x ≥ xr ∨ y > yr2) ∧ (x > xr ∨ y ≥ yr2)
]

≡ ∃yr2

[ (
x′ < xr ∧ y′ ≤ yr2 ∧ x ≥ xr ∧ x > xr

)
∨(

x′ < xr ∧ y′ ≤ yr2 ∧ x ≥ xr ∧ y ≥ yr2

)
∨(

x′ < xr ∧ y′ ≤ yr2 ∧ y > yr2 ∧ x > xr
)
∨(

x′ < xr ∧ y′ ≤ yr2 ∧ y > yr2 ∧ y ≥ yr2

) ]
DE≡ ∃yr21

(
x′ < xr ∧ y′ ≤ yr21 ∧ x > xr

)
∨

∃yr22

(
x′ < xr ∧ y′ ≤ yr22 ∧ x ≥ xr ∧ y ≥ yr22

)
∨

∃yr23

(
x′ < xr ∧ y′ ≤ yr23 ∧ y > yr23 ∧ x > xr

)
∨

∃yr24

(
x′ < xr ∧ y′ ≤ yr24 ∧ y > yr24

)
EE≡

(
x′ < xr ∧ x > xr

)
∨
(
x′ < xr ∧ y′ ≤ y ∧ x ≥ xr

)
∨(

x′ < xr ∧ y′ < y ∧ x > xr
)
∨
(
x′ < xr ∧ y′ < y

)
.

Combining A and B, we have

p� ≡ ¬[∃xr[A ∨B]]

DE≡ ¬
[
∃xr1

(
x′ < xr1 ∧ x > xr1

)
∨

∃xr2

(
x′ < xr2 ∧ y′ ≤ y ∧ x ≥ xr2

)
∨

∃xr3

(
x′ < xr3 ∧ y′ < y ∧ x > xr3

)
∨

∃xr4

(
x′ < xr4 ∧ y′ < y

)
∨

∃xr5

(
x′ < xr5 ∧ x > xr5

)
∨

∃xr6

(
x′ < xr6 ∧ y′ ≤ y ∧ x ≥ xr6

)
∨

∃xr7

(
x′ < xr7 ∧ y′ < y ∧ x > xr7

)
∨

∃xr8

(
x′ < xr8 ∧ y′ < y

) ]
EE≡ ¬

[ (
x′ < x

)
∨

(
x′ < x ∧ y′ ≤ y

)
∨(

x′ < x ∧ y′ < y
)
∨

(
y′ < y

)
∨(

x′ < x
)
∨

(
x′ < x ∧ y′ ≤ y

)
∨(

x′ < x ∧ y′ < y
)
∨

(
y′ < y

) ]
≡ x ≤ x′ ∧ y ≤ y′.

Since Φ for this query is anti-monotone, prune(`, C) ≡ ∃〈x′, y′〉 ∈
C : 〈`.x, `.y〉 � 〈x′, y′〉, which simplifies to ∃〈x′, y′〉 ∈ C : `.x ≤
x′ ∧ `.y ≤ y′. This check turns out to be the same as that derived
in Example 11 for a simpler join condition, although in general it
does not need to be.

C Additional Details on Memoization
Here we provide additional details on handling algebraic aggre-
gates when GL → AL does not hold on L, generalization to the
case of GR 6= ∅, and how to apply memoization using static query
rewrite instead of our NLJP operator.

Recall from [9] that an algebraic aggregate function f is one that
can be characterized by a pair of aggregate functions (f i, f o), both
with bound-size output, such that given a partitioning of the input
set S of tuples into {S1, S2, . . . , Sn}, f(S) = f o({f i(Si) | i =
1, 2, . . . , n}). Examples of algebraic aggregates in SQL (without
DISTINCT on input) include SUM, MIN, MAX, where both f i and f o

are the same as f itself; COUNT, where f i is COUNT and f o is SUM;
and AVG, where f i computes and returns both SUM and COUNT for
its input, while f o adds up all sums and counts respectively across
its inputs and returns the ratio.

Consider again the generic query Q in Listing 5. We can apply
memoization using static query rewrite as shown in Listing 8, pro-
vided that Φ is applicable to R, all aggregates in Λ only involve
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-- The case when GL → AL:
WITH
LJT AS (SELECT DISTINCT JL FROM L),
LJR AS (SELECT JL, GR,

fΛ,1(EΛ,1) AS AΛ,1, fΛ,2(EΛ,2) AS AΛ,2, ...
FROM LJT, R WHERE Θ GROUP BY JL, GR HAVING Φ)

SELECT GL, GR, Λa(AΛ,1, AΛ,2, . . .)
FROM L NATURAL JOIN LJR ON JL
GROUP BY GL, GR;
-- The case when GL → AL does not hold:
WITH
LJT AS (SELECT DISTINCT JL FROM L),
LJR AS (SELECT JL, GR,

f i
Λ,1(EΛ,1) AS AΛ,1, f i

Λ,2(EΛ,2) AS AΛ,2, ...,
f i
Φ,1(EΦ,1) AS AΦ,1, f i

Φ,2(EΦ,2) AS AΦ,2, ...
FROM LJT, R WHERE Θ GROUP BY JL, GR)

SELECT GL, GR, Λa(fo
Λ,1(AΛ,1), fo

Λ,2(AΛ,2), . . .)

FROM L NATURAL JOIN LJR ON JL
GROUP BY GL, GR

HAVING Φa(fo
Φ,1(AΦ,1), fo

Φ,2(AΦ,2), . . .);

Listing 8: Memoization through static query rewriting.

attributes in R or *, and finally, all aggregates in Φ and Λ are alge-
braic unless GL → AL. Note that we do not assume GR = ∅. For
Listing 8, let Φ = Φa(fΦ,1(EΦ,1), fΦ,2(EΦ,2), . . .), where each
fΦ,i(EΦ,i) denotes an aggregate subexpression of Φ with aggre-
gate function fΦ,i and non-aggregate input expression EΦ,i; simi-
larly, let Λ = Λa(fΛ,1(EΛ,1), fΛ,2(EΛ,2), . . .).

The first query in Listing 8 shows the simpler case where GL →
AL. Here we know each LR-group comes from a single L-tuple,
although one L-tuple may produce multiple LR-groups (because
GR 6= ∅). Intuitively, the rewritten query first computes the set of
join attribute values from L as LJT (analogous to the binding query
QB for the caching-based implementation discussed in Section 7).
Next, we join LJT with R and compute the result groups for each
possible combination of join attribute values, discarding any group
that does not satisfy Φ. (As for Λ, note that we can evaluate all its
aggregate subexpressions at this point, but full evaluation of Λ may
require GL and therefore must be done later.) Finally, we join the
result groups back with L to obtain the final result.

The second query in Listing 8 shows the more complex case
where GL → AL does not hold, and we assume that all fΦ,1’s
and fΛ,1’s are algebraic. In this case, multiple L-tuples with pos-
sibly different JL values may contribute to the same LR-group, so
we cannot fully evaluate Φ or Λ when computing LJR. Instead, we
use f i

Φ,1’s and f i
Λ,1’s in LJR to compute partial results for aggre-

gate subexpressions of Φ and Λ, and then use f o
Φ,1’s and f o

Λ,1’s in
the last step to combine the partial aggregate results and evaluate Φ
and Λ on the complete LR-groups.

Finally, we note that while we described the details above on
handling algebraic aggregates in the context of static query rewrit-
ing, they also apply to NLJP-based memoization. Note also that
we can NLJP-based memoization to handle GR 6= ∅ too, simply
by caching results by JL ∪GR instead of only by JL (as is done in
LJR for static query rewriting).

D Generalization to Multiway Joins
We describe an optimization procedure that finds opportunities to
apply generalized a-priori, memoization, and pruning techniques
to an iceberg query involving multiway joins. Given an iceberg
query Q involving a two-way join of L and R as shown in List-
ing 5, let gapriori(Q,L,R) return QL, the subquery in L′ (Sec-
tion 4.1) used to safely reduce L if the generalized a-priori tech-
nique applies, or error otherwise. Let memprune(Q,L,R) return

# consider generalized a-priori
O ← ∅ # rewrites found by gapriori
T ← T(Q) # relations to be considered by gapriori
while T is not empty:

try:
〈TL, QL〉 ← pick_gapriori(Q, T )

T̆L ← subset of TL with at least one attribute output by QL

O.append(〈T̆L, QL〉)
T ← T \ TL

except: # no more opportunities for gapriori
break

# apply memoization and pruning
try:
〈TL, QB , QR, QC , QP 〉 ← pick_memprune(Q) subject to
∀〈T, _〉 ∈ O : TL ⊇ T ∨ TL ∩ T = ∅

Q← NLJP(QB , QR, QC , QP )
except:

pass
# apply generalized a-priori rewrites
for 〈TL, QT 〉 in O:

rewrite Q to replace occurrence of Q1[TL] with Q1[TL] nQL

return Q

Listing 9: Optimization procedure for iceberg queryQ with a mul-
tiway join.

〈QB , QR, QC , QP 〉 return a specification of the NLJP operator if
memoization and/or pruning techniques apply (Sections 5 and 6),
or error otherwise. We now give a procedure that uses gapriori and
memprune to optimize an iceberg query with a multiway join, such
as the one in Listing 3.

Let T(Q) denote the set of relation instances joined by Q (note
that there may be multiple instances for the same relation in the
case of self-joins). For brevity, we refer to relation instances sim-
ply as relations below. Suppose T ⊆ T(Q) is a subset of the re-
lations involved in Q. Let Q1[T ] denote the query over T formed
by pushing selection/join conditions and projections in Q down as
much as possible.

On a high level, our strategy is simple (see Listing 9). We first
search for opportunities for applying the generalized a-priori tech-
nique, by iteratively calling a subroutine pick_gapriori(Q, T ) (de-
tails omitted in Listing 9), which finds a way (if any) to safely re-
duce some relation(s) in a given set T (which starts out to all rela-
tions in Q). To consider a particular non-empty subset TL ⊂ T ,
pick_gapriori treats Q as an iceberg query over two relations L =
Q1[TL] and R = Q1[T(Q) \ TL], and invokes gapriori. (Note
that the reducer query returned by gapriori may in fact be applica-
ble to just a subset of TL.) After finding each a-priori optimization,
we call pick_gapriori again to continue looking for opportunities
in the remaining relations; the process continues until there are no
more opportunities or relations to consider. At this point, we have
collected a list of generalized a-priori optimizations of the form
〈TL, QL〉, each corresponding to a rewrite that replaces Q1[TL]
with Q1[TL] nQL.

Next, we look for an opportunity for applying memoization and
pruning by calling a subroutine pick_memprune over Q. Again,
to consider each non-empty subset TL of the relations, we treat
Q as an iceberg query over two relations L = Q1[TL] and R =
Q1[T(Q) \ TL], and invoke memprune. However, if the general-
ized a-priori rewriting step has determined earlier that two relations
need to be joined for a reducer to apply, we would not break them
apart; i.e., both of them are in TL, or neither is. If pick_memprune
is successful, we rewrite Q using an NLJP operator. Note that,
other than the case when generalized a-priori rewrites require an
incompatible grouping of relations (which we have taken care of),
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these rewrites do not affect the applicability of memoization and
pruning.

The optimization procedure has a worst-case complexity that is
exponential in the number of relations in Q, as each invocation
of pick_∗ needs to potentially consider a large number of possible
subsets. In practice, we prioritize the search so it can quickly find
an available optimization; e.g., pick_memprune will first consider
the minimal TL that include all of GL in Q. On the other hand, our
current procedure is a best-effort algorithm that is content of finding
some set of optimization opportunities; add cost-based considera-
tions would necessitate more sophisticated search strategies, which
we leave as further work.

Example 13. We end this section by walking through the steps of
optimizing the complex query involving a four-way self-join in List-
ing 3. We start by finding generalized a-priori optimization oppor-
tunities. Singleton candidates for TL (e.g., {S1}) yields no op-
portunity, because of the inequality join condition with the rest of
the relation instances (e.g., T1.val>=S1.val). However, TL =
{S1, T1} reveals an opportunity with the following reducer:

SELECT S1.id, S1.attr FROM Product S1, Product T1 -- QS1
WHERE S1.category = T1.category
AND T1.attr = S1.attr AND T1.val > S1.val
GROUP BY S1.id, S1.attr
HAVING COUNT(*) >= 10;

To see why this optimization applies, note that the original query
Q can be seen as an iceberg query with L = Q1[S1, T1], R =
Q1[S2, T2], GL = {S1.id, S1.attr}, GR = {S2.attr}, JL =
{S1.id, T1.id}, and JR = {S2.id, T2.id}. The HAVING condition
is obviously monotone. Finally, GR ∪ JR is a superkey of R. This
last observation is trickier: the definition of R contains the condi-
tion T2.attr=S2.attr; since S2.attr is in GR, the closure of
GR ∪ JR must also contain T2.attr, which means that GR ∪ JR
contains all key attributes of S2 and T2, and therefore must be a
superkey of R. Hence, Theorem 2 applies.

Note that the reducer queryQS1 can be applied to S1 alone (even
though it was found by considering {S1, T1}), so we record the
rewrite 〈{S1}, QS1〉 and move on to considering the remaining re-
lation instances {S2, T2}. By a process similar to the above, TL =
{S2, T2} reveals a second reducer QS2 that applies to S2, which is
identical toQS1 with S1 replaced by S2 and T1 replaced by T2. This
process additionally requires inferring that occurrences of S1.id
in the original query’s SELECT and GROUP BY can be replaced by
S2.id as they are equated, and that S2.category=T2.category
follows from the dependency id → category and query condi-
tions S1.category=T1.category, S1.id=S2.id, and
T1.id=T2.id. Note that if we are unable to infer the above two
properties, a less effective (but still correct) reducer will be derived.

After identifying the generalized a-priori opportunities, we pro-
ceed to consider memoization and pruning optimization. As dis-
cussed earlier, we start by examining the minimal subset of relation
instances that include the GROUP-BY attributes—TL = {S1, S2}.
Interestingly, note that this pair of relation instances differs from
the two pairs used by generalized a-priori earlier. Luckily, this
TL is still compatible with the grouping of relation instances re-
quired by generalized a-priori, because both reducers apply to sin-
gle relation instances. With TL = {S1, S2}, we have GL =
{S1.id, S1.attr, S2.attr} and JL = {S1.category, S1.attr,
S2.attr, S1.val, S2.val}. It is clear that GL → AL because of
the join condition S1.id=S2.id. Thus, Theorem 3 applies. Fur-
ther applying the technique for deriving pruning technique in Sec-
tion 5.2, we have the NLJP-based plan in Listing 10.

SELECT S1.id, S1.category AS c, -- QB, binding: (c,a1,a2,v1,v2)
S1.attr AS a1, S2.attr AS a2,
S1.val AS v1, S2.val AS v2

FROM Product S1, Product S2
WHERE S1.id = S2.id;

SELECT COUNT(*) AS payload -- QR(b)
FROM Product T1, Product T2
WHERE b.c = T1.category AND T1.id = T2.id
AND T1.attr = b.a1 AND T2.attr = b.a2
AND T1.val > b.v1 AND T2.val > b.v2;

SELECT * -- QC(b′)
FROM C(c, a1, a2, v1, v2, payload) -- cache
WHERE b′.c = c AND b′.a1 = a1 AND b′.a2 = a2
AND b′.v1 >= v1 AND b′.v2 >= v2
AND payload < 10;

SELECT id, a1, a2, payload -- QP

FROM T(id, c, a1, a2, v1, v2, payload) -- concatenated tuples
WHERE payload >= 10;

Listing 10: NLJP-based plan for the complex query in Listing 3.

WITH U(id, attr) AS (QS1)
SELECT S1.id, S1.category AS c, -- QB

S1.attr AS a1, S2.attr AS a2, S1.val AS v1, S2.val AS v2
FROM
(SELECT * FROM Product WHERE (id,attr) IN (SELECT * FROM U)) S1,
(SELECT * FROM Product WHERE (id,attr) IN (SELECT * FROM U)) S2
WHERE S1.id = S2.id;

Listing 11: Modified QB for the NLJP-based plan in Listing 10.

Finally, going back to the two generalized a-priori opportunities
identified earlier, we can modify QB by applying the same reducer.
Listing 11 shows the reduced QB .

E Query Plans for Skyband
For the following skyband query Q1:

SELECT COUNT(1)
FROM player_performance L, player_performance R
WHERE L.b_h >= R.b_h AND L.b_hr >= R.b_hr
AND (L.b_h > R.b_h OR L.b_hr > R.b_hr)
GROUP BY R.playerid, R.year, R.round
HAVING COUNT(1) < 50;

PostgreSQL uses the following query plan:

Finalize GroupAggregate
Group Key: r.playerid, r.year, r.round
Filter: (COUNT(1) < 50)
-> Sort

Sort Key: r.playerid, r.year, r.round
-> Gather

Workers Planned: 2
-> Partial HashAggregate

Group Key: r.playerid, r.year, r.round
-> Nested Loop

-> Parallel Seq Scan on players
-> Index Scan using b_h,b_hr on players

Index Cond: ((l.b_h >= b_h)
AND (l.b_hr >= b_hr))

Filter: ((l.b_h > b_h) OR (l.b_hr > b_hr))

Vendor A uses the following:

SELECT
Parallelism (Gather Streams)

Filter
Compute Scalar
Hash Match (Aggregate)

Parallelism (Repartition Streams)
Stream Aggregate (Aggregate)

Nested Loops (Inner Join)
Index Scan (NonClustered) [players.ibx]
Index Scan (NonClustered) [players.bhr_bh]
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