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Abstract—We study the problem of assigning subscribers to the broker. At the same time, we may not want to assign a
brokers in a wide-area content-based publish/subscribe system. subscriber to a broker located far away in the network, b&gau
A good assignment should consider both subscriber interests in doing so increases delivery latency and communication. cost

the event space and subscriber locations in the network space, . hould not ian t bscribers t inal
and balance multiple performance criteria including bandwidth, Inally, we should not assign (oo many Subscribers to asing

delay, and load balance. The resulting optimization problem is broker, which creates a performance bottleneck and delays
NP-complete, so systems have turned to heuristics and/or simpler event delivery. Balancing these considerations—simyleoit
algorithms that ignore some performance criteria. Evaluating interests in the event space, proximity of locations in the

these approaches has been challenging because optimal solutiong, anyork space, and balance of load across brokers—is a
remain elusive for realistic problem sizes. To enable proper difficult optimizétion problem

evaluation, we develop a Monte Carlo approximation algorithm
with good theoretical properties and robustness to workload ) )
variations. To make it computationally feasible, we combine the The Need for a Yardstick. There is a good amount of

ideas of linear programming, randomized rounding, coreset, and previous work on subscriber assignment and related prablem
iterative reweighted sampling. We demonstrate how to use this gee Section VII for details. Most approaches ignore some

algorithm as a yardstick to evaluate other algorithms, and why L .
it is better than other choices of yardsticks. With its help, we aspects of the problem or employ heuristic algorithms. For

show that a simple greedy algorithm works well for a number €xample, Aguilera et al. [1] assign subscribers to theisest

of workloads, including one generated from publicly available brokers in the network, ignoring subscriber interests. @ t

statistics on Google Groups. We hope that our algorithms are other hand, Diao et al. [2] make assignment based on sitwyilari

[‘Ot Og'y “S‘ff”'t.i” the.:lr own réght’ b”ft our F;”t“dp'ed f?pptr,oa‘:h . of interests, without considering network latency. Papaem

oward evaluation will also be useful in future evaluation o . PR

solutions to similar problems in content-based publish/subscribe. manouil Qt al. [5] p_resent a general optlmlzatlon framework
that considers multiple performance criteria, but reliesam

|. INTRODUCTION iterative method to explore the solution space throughlloca
A wide-area publish/subscribe system typically consifts adjustments of dissemination trees.
an overlay network obrokers Eventsoriginate frompublish- It is understandable and often necessary to employ hegisti

ers, and are delivered by the brokers to interestebiscribers for subscriber assignment, because the problem in gereeral i
Traditional publish/subscribe tepic-basedwhere subscribers NP-complete. Evaluating these heuristics, however, istifat-
subscribe to a set of predefined topics such as “Apple newagly difficult. How close are their solutions to the optiral
or “American ldol.” Content-basegublish/subscribe, on the How well do they work on large, realistic workloads? Because
other hand, allows a subscriber to express an interest asfahe problem’s inherent complexity, optimal solutiong fo
Boolean predicate against values of attributes inside tevemealistic problem sizes are computationally elusive artdrof
For example, a subscriber may subscribe to eBay antiqueavailable for comparison. What would be a good yardstick
auctions with seller rating higher than 90% and startingdgid then? Could yardsticks be solutions to simpler problems tha
tween $100 and $200. Only events matching the predicate vihore some performance constraints, since they are easier
be delivered to the subscriber. Content-based publisbésilie compute and can act as lower bounds for the optimal solution?
is of interest to both database and networking communitigs [
[2], [3], [4], because it must address the dual challengessibf Our Contributions. A main goal of this paper is to propose
scription matching in an event space and event dissemmate better yardstick for evaluating the performance of variou
in the network space. algorithms for the subscriber assignment problem. Our pro-
An important problem in content-based publish/subscigbe posal is an algorithm calle§LP, a shorthand foSubscriber
subscriber assignmenEach subscriber needs to be assigneésssignment byLinear Programming SLP jointly considers
a broker responsible for forwarding matching events to thi®th subscriber interests in the event space and subscriber
subscriber. Intuitively, we would like to assign subscrébeith locations in the network space, and balances multiple perfo
similar interests to the same broker, so that an event detive mance criteria including bandwidth, delay, and load batanc
to the broker could serve multiple subscribers simultaslou While SLP’s solution is not guaranteed to be optimal, it has
If all subscribers assigned to the broker have similar @gts; provable properties that make it robust to workload vaviati
then only a subset of all possible events needs to go throuyid reasonable as a yardstick for evaluating other algosith



Moreover, a by-product of runnin§LP (the LP fractional  To disseminate events, we use a et {B;,---,B,} C
solution) gives us another useful indicator of how close I of n brokers P and B together form adissemination
solution is to the optimal. network which we assume to be a tré@eooted atP. A leaf of

We also presentGr*, a simple offline greedy algorithm T is called aleaf broker A subscriber assignment : § — B
for subscriber assignment that presorts the subscribees itonnects each subscriber to a leaf broker.
particular way before assigning them one by one. Using
SLP as a yardstick, we evaluater* and a number of other Filters. Each brokerB; is associated with dilter f; C E
algorithms. With the help ofLP, we are able to conclude, such that if a brokei3; (resp. subscribef;) is a descendant
with confidence, thaGr* works very well for most (but not of B;, then f; C f; (resp.o; C f;). We call this condition
all) of the workloads tested. Our evaluation also reveads tithe nesting condition An evente is passed to a brokeB;
simpler algorithms that ignore one performance criterion érom its parent ife € f;. To ensure simplicity and efficiency
another are poor yardsticks, because their solution caffest in implementing this forwarding logic, we requirg to be
meaningful bounds on what can be realistically achievednwhhe union of at mostv rectangles, for some small constant
considering all constraints. which we callfilter complexity In the special case af = 1,

Another major obstacle for evaluation is the lack of puld¥ U ¥ becomes a bounding box hierarchy like an R-tree. We
licly available, realistic workloads for content-basedbpu will, however, allowa > 1.
lish/subscribe. Information about user subscriptionte(&sts
and locations) is rarely disclosed because of privacy amsce Bandwidth. We are interested in minimizing)(7), the
and commercial interests. Lack of widely deployed systenggpected total bandwidth consumpti@n bandwidthfor short)
with powerful subscription languages also contributeshi® tof 7. Q(T) = >_5 5 Q(Bi), whereQ(B;) is the expected
difficulty. Thus, researchers have often resorted to syntHgandwidthinto broker B;. (We ignore the bandwidth required
sized workloads. However, simplistic workload generatars for leaf brokers to deliver events to subscribers because th
the risk of missing interesting patterns of clustering ani@tal does not depend on the subscriber assignment.) When
overlap among subscriber interests, and correlationsdsetw events are uniformly distributed()(B;) = Vol(f;). Our
subscriber interests and locations, which may influence tapproach can be extended to a non-uniform event distritoutio
evaluation of subscriber assignment algorithms. Theeeforr, in which caseQ(B;) = [, 7(e)de.
beyond simple synthetic workloads used for evaluation ley pr Choosinga > 1 can reduce bandwidth into a broker, as
vious work, we also evaluate our algorithms using workloadsultiple rectangles can summarize child filters or subsionis
we generate [6] from publicly available statistics on Geoglmore precisely than a single rectangle, at the cost of isarga
Groups, which we believe to be closer to (at least one) yealistorage and processing overhead at the broker.

SLP is computationally feasible on realistic problem sizes;
we have run it on workloads consisting of hundreds dfatency. We want to bound the latency of delivering events
brokers and a million subscribers. We makeP scalable to each subscribes;. We make a natural requirement in
by combining a suite of techniques, including randomizeithis paper: for a subscriber assignmentto be valid, the
rounding, coreset, and iterative reweighted sampling. 8/hihetwork latency of the path iff U ¥ from the publisher to
SLP is slower than the simpler algorithms, its solution qualitgach subscribe$; must not exceed the user-defin@adximum
makes it well worthwhile in some settings, such as initidl-su allowable latency; for S;. Here, the path latency is the sum
scriber assignment, periodical re-optimization, and eisflg of distances i\ between consecutive points on the path.
comparison with and evaluation of other algorithms. Our approach can be extended to handle other form of
latency constraints, such as one that bounds only the last-
_ hop latency to each subscriber (from the broker it is assigne
Let N denote thenetwork spaceAlthough our algorithm ) - \ore sophisticated constraints that account for broke

works on any metric space, for simplicity, we assume Mat ,cessing delays can be enforced by additionally imposing
is a multi-dimensional Euclidean space, obtained by st@hdg,,q palance constraints described below.

Internet embedding techniques [7], [8], [9]; Euclideanalice

between two points approximates the network latency betwegyaq Balance. We also want to ensure that not too many

them. LetP € N be thepublisherand$ = {S51,---, Sm} €N gypscribers are assigned to one leaf broker. Without loss of

be a set ofm subscribers o _generality, assume tha, , - - - , B; are thel leaf brokers inB.

~ P publishesevents each of which is represented as a po"]%ach leaf broket3; is associated with a user-definedpacity

in thg event spacdE. We assumd*:_ to be thed—dlmen§|opal fraction «; € [0, 1], such thatzl-zl r; = 1. Perfect load bal-

Euclidean spac&®?. Each subscribesS; has asubscription ance happens when eaBhis aslsignedeim subscribers, but it

oi & ]El which we assume to be @dimensional rectangle. js ynnecessary and often undesirable as it may sacrifice othe

S; receives an evert € E if ¢ € 0;. performance measures. Let; be the number of subscribers
'Without loss of generality, we assume one subscription pg§signed to leaf brokeB;; we call max;<;<; ;7= the load

subscriber; an individual with multiple subscriptions can be model&lance factor(lbf) of the assignment. We allow the user
as multiple subscribers located at the same poirff.in to cap the Ibf at8,,.x and specify adesired Ibf 3, where

Il. PROBLEM STATEMENT



Bmax > B > 1. We try to find an assignment with Ibf within IV. ONE-LEVEL SA

p; failing that, we try to find an assignment with Ibf within ' \y.e now turn to a more sophisticated algorithBLP. In
Bmax @nd as close tg as possible. The paiys, fmax) allOWs  this section we describ®LP;, the one-level version of SA, in
the user to encourage load balance towards the desired Igygich all brokers are directly connected to the publishef.in
without rewarding assignments that “over-balance.” In Section V, we extend our solution to a multi-lev&l
Although SA can be written as an integer program, solving
it directly is not computationally tractable even for theeon
level version. Realistic workloads involving hundreds lodu-
sands of subscribers easily overwhelm the most sophisticat
solvers. To tame the complexity of the problem, we first solve

31” tatshSIgPTenE : 8 ? FBt e_md f;!t(?_rsdfort all tr)]rokebrs,m_sl;mha carefully simplified problem to obtain a preliminary, but
at the latency constraint 1S salistied at each SUbSCHer, |\, ,qiheless good, assignment of filters to brokers; we then

nesting condition is satisfied by all filters (each W't.h NO B0T,se it to derive the final solution to the full problem. The
than « rectangles), and the load balance factor is no m

a l Offree-step strategy, illustrated in Figure 1, is as follows
than g (or as close tg3 as possible and no more thag,.). P 9y g '

The assignment with the minimum expected total bandwidth
Q(T) will be returned. By reducing the standard set cover
problem [10] to SA, we can show that SA is NP-complete.

The Problem. The subscriber assignment proble(84A is
defined as follows: Giver?, B, §, 7, maximum allowable
latenciesd = {61, ...,0,,}, leaf broker capacity fractions =
{k1,...,k1}, as well as parameters, 3, and B,.x, cOMpute

l Input subscriptions

Subscription sampling (IV-A.#)

Subscription subset

‘Candidate filter generation (IV-A.#)

¢—‘ Candidate filters

LP relaxation (IV-A.1) ‘

Preliminary filter for each brokerd)
No All subs covered?

Yes Preliminary filter for each brokerd)

IIl. Two GREEDY ALGORITHMS

We first present two simple greedy algorithms for SA, both ‘
aimed at minimizing bandwidth while meeting latency and
load balance constraints.

The first algorithmOnline Greedy(Gr), assigns subscribers
sequentially to leaf brokers, without having the entire et
subscribers available from the start. It considers thecefié
incorporating the new subscription into existing filterstire
event space, in a way similar to R-tree splitting heuristres
each subscribef; € 8, we define thecostof assigningS; to
a leaf brokerB; to be the sum of least volume enlargement
of filters over the path i from the publisher taB;, such
that the nesting condition is preservegt. identifies a set of
candidate brokergdefined below) forS;, and then greedily 1) Preliminary filter assignmentThe heart ofSLP, this
assignsS; to the candidate broker with the minimum cost. We step produces a preliminary filter assignme@t =
break a tie by choosing the least loaded broker (i.e., onle wit

‘ Assigning subscriptions with max-flow (IV-Bb

Subscription assignme:rt ‘ Filter adjustment (IV-C) ‘

() LFinaI filter for each broker%)
Fig. 1. Overview ofSLP;.

the minimum ;i’ig‘, wherem; is the number of subscribers
already assigned to it).

B, is acandidate brokeffor S; if the following conditions
are met: 1) AssigningS; to B; satisfies the user-defined
latency constraint; 2)B; will not be overloaded by this
assignment; i.e.,’Z;lg‘l, is no more than a user-specified Ibf.

(This Ibf can be set initially to3; it can be increased if no

feasible solution is found, eventually 8),..) 2)

The second algorithmQffline Greedy(Gr"), is an offline
and more expensive variant Gf. Each subscriber is processed
in the exact same way aSr. However, Gr* first sorts and

{¢1,-..,©m}, where each brokeB; is assigned a filtep;.

As motivated, this step considers all factors simultankous
in optimization—bandwidth, latency, and load balance—
using LP relaxation and randomized rounding. To keep the
size of the LP under control, instead of optimizing directly
with all subscriptions and all possible filters, we choose
representative sets (coresets) of subscriptions andaztedi
filters to consider in an iterative fashion.

Subscription assignmenGiven the preliminary filter as-
signment®, this step considers the full set of subscriptions
and computes the subscriber assignmgnt § — B.
Since the filters are already given, this step focuses on

then processes the set of subscribers in ascending order ofoad balancing while meeting latency constraints, using a

the cardinality of their candidate broker sets. Intuityydby

max-flow algorithm.

deferring the processing of subscribers with more choices), Filter adjustmentGiven ® and ¥, this step further refines

we reduce the chance thétr* will be forced into a costly

decision due to lack of choices. Note that the assignment of | et 5 = {f, ...

earlier subscribers may restrict the choices availableater |
subscribers; henceGr* updates the ordering of remaining

the filters and enforces the maximum filter complexity.
, fn} be the resulting set of filters. The
algorithm returns: and &.

subscribers whenever a broker becomes fully loaded. As fe Preliminary Filter Assignment
will see in Section VIGr* not only consumes lower bandwidth We present the first step 6LP1, FilterAssign(B, S) (Algo-
than Gr but also produces much more balanced loads thvan rithm 1). We begin in Section IV-A.1 by describind’Relax,



Algorithm 1: Preliminary filter assignment algorithm. o y;r, = 1 iff rectangle Ry, is assigned taB; as part of its
FilterAssign(B, 8) begin filter.

1
2| g 4 s d The objective is to minimiz&_ ; .5 , cx Vol(Rx)yir,” Sub-
3 | whileg< ° ject to the following constraints:
4 foreach S € 8 do w(S) « 1; : ] g ' ) ] .
5 q + 10gIng; (C1) [Filter complexity] Each broker is assigned a filter
6 for i < 1 to 4g1n(|8|/g) do consisting of at mostv rectangles:
7 repeat o <a VB; € B.
8 Q + Random(8, w, q); . Lpen ik < e . .
9 ® < FilterAssignHelper(Q, B, 8): (C2) [Assignment and Iatency] Each subscriber is a_\SS|gned t
10 if ® = 1 then return L; at least one broker meeting the latency constraint:
1 ifLVizltz:Jtrerg(%l—i-f);I'q,)B,S) = then ZBie'Bj zi; > 1 VS; €8,.
12 €)P; ; . _

. (C3) [Load balance] The load balance factor is at mgist
13 V « Violate(®, B, 8); > < BrilSs| VB; € B
14 until 3oy w(S) <edgesw(S); 5;€8, Lig = PRilob g :
15 | foreach S € V do w(S) «+ 2w(S); (C4) [Nesting] A subscription can only be assigned to a broke
16 | g« 2g; whose filter contains it:
17 return L; ZRkeﬁj Yik = Tij  VSj € 84,VB; € B;.
18 FilterAssignHelper(Q, B, $) begin By relax'mg the values of Boolean varlablgs to_ be real
19 for j < 0 to In|S| do numbers (i.e.,z;;,yix € [0,1]), the above mixed integer
20 8p < Random(8, 1, 10|B|); program can be reduced to an LP. Using an LP algorithm,
21 8a = QU 8p; we compute the optimal fractional solution, and then apply
22 R + FilterGen(S,); ; ; ; :

) randomized rounding [10] to construct a solution to therfilte

23 ® <+ LPRelax(B, R, 84, 8s); - bl S ifically. f N
0t if £ | then return ®; assignment problem. Specifically, for eagh, supposey;.

” return - is its \(alue in th'e: optional fractional solution. We 3@%
L ’ to 1 with probability 1 — (1 — ;)2 18« or 0 otherwise.
The resulting filter assignment B8 = {¢1,...,¢,}, where
a subroutine for computing a filter assignment using LB, = {R; | 7,, = 1}.
relaxation. Calling this subroutine with all subscriptoand Before returning® as a preliminary filter assignment,
all possible filters is impractical. Therefore, in Sectiot | | PRelax further verifies thatb coversS,. More precisely, we
A.2, we use iterative reweighted sampling to obtain a cdresgy that a subscribe$; is coveredby a filter assignment if
of subscriptions to ru.PRelax with. In Section IV-A.3, we there exists a brokeB; with assigned filterp; such thatS;’s
present a method for choosing a good subset of candidstehscriptiono; is contained in one of the rectangles @f,
filters to be considered blyPRelax. and the assignment of; to B; satisfies the latency constraint
i i ] for S;. A set of subscribers isoveredby a filter assignment if
1) LP Relaxation: We first describ& PRelax(B, R, 84,81),  every subscriber in the set is covered. If it happens&hdoes
which assigns each broke; < B a filter consisting of not covers,, LPRelax performs randomized rounding again

rectangles int drawn from a given seR = {Ry,---, Ru}.  for the y;,’s to generate a nev. The scheme guarantees to
8, denotes the subset & considered bylPRelax; 8y € produce ad coverings, with probability at least /2.
8, denotes the subset for whidlPRelax enforces the load

balance constraint (see (C3) below). Intuitively, we woiikd Remark. Because of roundingp; may contain more than
8, = 8, = 8 and letR contain the minimum enclosing boxa rectangles; this violation is okay for now—recall from the
of each non-empty subset of the subscriptions, but this dvoleginning of Section IV that the goal of our first step in
make the algorithm quite expensive in practice. We cangfulbLP1 is not thefinal filter assignment, but a good, preliminary
choose a subsét, C $ so that a filter assignment with respec@ssignment to guide the reminding steps; in Section IV-C we
to 8, is also good with respect to the entire Setand choose Will fix such violations.

a subsets, C 8, to facilitate load balancing. We address Note that we could also apply randomized rounding:gs
how to chooseS, and §, (and why to distinguish them) in and obtain a subscriber assignment 8g; but the resulting
Section IV-A.2, and how to choosR in Section IV-A.3. assignment may violate constraints due to rounding, ansl it i

For each subscribe$; € S,, let B; C B be the subset of NOt the goal of this step of our algorithm.
brokers that satisfy the user-defined latency constrainiSfo 2) Subscription Sampling: If we input all subscribers as

if .5; is assigned to them; 1&; = {Ry | o; C Ry € R}, 1.8, g ands, to LPRelax, the size of LP in Section IV-A.1 will be
the subset of given rectangles that contéifs subscription. 14, |arge even for moderate number of subscribers. Therefor
We formulate SA as a mixed integer program. We introduce
two sets of Boolean variables;, y;, € {0,1} for i € [1,n], 2If filters consist of more than one rectangte ¢ 1), this objective
j€{j|S;€8.}, andk € [1,u], where function computes the sum of volumes of these rectangles instead of
the volume of their union. We choose this function because it is
« x;; = 1 iff subscriberS; is assigned to brokeB;, and simpler and discourages choosing overlapping rectangles for filters.




o O . Each stage of the search targets a spegifend consists
@ @ of multiple valid iterations® We maintain a weight for each

subscriber inS, initialized to 1 at the beginning of the stage.
@ Each iteration chooses a random sub&etC § of size
O(glng), where each subscriber is chosen with probability
proportional to its weight. We compute a filter assignment
(2) (b) for Q using a helper procedurélterAssignHelper described
Fig. 2. (a) Coreset members are drawn with thick outlines; (b) filtetgelow. If the procedure finds an assignmdnt(by calling
covering the coreset areexpanded to cover all subscriptions. LPRelax), we check whethef1 + £)® covers the entires.

0

O

s}

e 2]
m]
o
(m]

— = | Rl S el If yes, FilterAssign stops and returngl + ¢)®. Otherwise, we
4@] o w double the weight of each subscriber not covereddyyand
B ! i _3_ o begin a new iteration. An example is shown in Figure 4. If the
=j | P S _:.-J'JI:l number of valid iterations for the stage excedgsn(|S|/g),
i | : oA '[_’DJ we conclude that the-certificate has size larger than(by
=) — e-- ... Lemma 2), and we move on to the next stage.
o _ FilterAssignHelper, invoked by the inner loop of
(2) Super-subscriptions (b) Rectangle generation FilterAssign, further prepares the input for and calls
Fig. 3. lllustration of candidate filter generation. LPRelax. The e-certificateQ that we look for inFilterAssign
we present a method to reduce the number of subscriberddntended for the problem of coverirfy but sincel PRelax
input to LPRelax. This method combines two ideas: considers coverage and load balance jointly, we must also

ensure that our input toLPRelax properly reflects the

« Coreset For a wide range of geometric optimization probPTOPerties ofs relevant to load balancing. To this end, we
lems, there exists a small subsebiese} of the input Choose a random subskf C § of size proportional tgB|
objects such that the solution for this subset is a god¥® Usel10|B| for the practical sizes o8 we consider). We
approximation of the solution for the entire input [11]C@!l LPRelax with 8, = QU 8;, and R = FilterGen(8,),

Here, we show that for filter assignment, a small coreswhere FilterGen is the candidate filter generation procedure
of § exists and can be computed quickly. to be described in Section IV-A.3. To guard against the small

possibility that a random choice &;, makes the otherwise
« lterative reweighted samplingThis idea has been previ-feasible optimization problem infeasible, we repeat with a

ously used for problems such as linear programming [14jew choice ofS; (up to a small number of times) ifPRelax
set cover [13], and computing coresets [14]. Here, we aphyils to find a feasible solution.

it to coreset computation for filter assignment. . ] ) .
3) Candidate Filter Generation: We now describe the

We begin with a few definitions. For a rectangleé = procedureFilterGen for constructing the seR of rectangles to
[Iiz1[li, k], the s-expansionof R, denoted by(l + ¢)R, be used byt PRelax to form filters. Without loss of generality,
is [T [l — e(hi — 1;)/2, hi + e(hi — 1;)/2). Similarly, the let§ = {S,, -, S,,} denote the set of subscribers given as
e-expansionof a filter o = {Ri,...,R.} is (1 + €)¢ = input to FilterGen (in reality, a subset may be given instead),
{1 +¢e)Ry,...,(1 +e)R,}. Let & = {¢1,--- ,¢,} be a and leto; denoteS;’s subscription (a rectangle iR?). Each
filter assignment t@®, with ¢; being the filter associated with rectangle inR is intended to contain a subset &f There are
B, and let(1+6)® = {(1+¢)¢1,...,(1+¢)pn}. We calla  Q(m?9) rectangles, each of which contains a distinct subset.
subsel C § ane-certificateif, for any filter assignmen® that However, this many rectangles makBRelax impractical.
coversQ, (1 +¢)® coverss (recall the definition of “cover”  Therefore, we take two steps (see Figure 3) to ensure
from Section IV-A.1). We illustrate the notion of coreset inhat R is small yet provides good coverage. The first step
Figure 2. Lemma 1 in the appendix shows that there is alwajg¢soptional. Here, we replace the input subscriptions with a
an e-certificate whose size is independent|8f although the set= = {¢,--- &} of k super-subscriptionswhere k is
worst case bound is exponential jB|. The size of ane-
certificate is likely to be much smaller in practice—as eviden 3This validity condition is needed to establish the termination
from our empirical results. condition of an iteration (Line 14 of Algorithm 1). Aalid iteration

. . . . is one where the ratio of the total weight of uncovered subscribers to
We now describeFilterAssign(B,8) (Algorithm 1), for 4t of all subscribers is no more thanBy random sampling theory

computing a preliminary filter assignment using the idegSemma 3 in the appendix), an iteration is valid with probability at
above. If we know there exists astcertificate of sizeg, leastl/2, so we can simply repeat an iteration until it is valid.
then an iterative reweighted sampling scheme computes an “This lower bound is tight. In the case df= 1, each subscription
certificate of sizeD(g1n g) in O(gIn|8|) iterations (Lemma 2 is an interval. Any intervall containing a subset of the: intervals

. . . L . . can be shrunk so that the endpoints/atoincide with the endpoints
in the appendix). Without knowing in advanceFilterAssign ¢ come of them intervals. Hence, there ar®(m?) candidate

performs an exponential search g@n running O(gIn|8|) intervals. Generalizing this argument to higher dimensions, we can
iterations for a value of and then doubling. generateO(m??) candidate rectangles .
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Fig. 4. Three steps of iterative reweighted sampling: Choose a s8bsénd a filter assignmen® of 8,; (a, b) double the weight of all
uncoveredsS € 8, (c) The expansion of coverss.

A

\ 6r e o shrink J to the smallest possible interval that still contains

i i the same subset of intervals ip;,. We then add/ to g,; and
i — repeat the above step, until becomes empty, at which point
— we addg;; to J; and move on to the next In the worst case,
— - |J;| = O(klogy A/d), but in practice we expect it to be closer
— — to O(k) or even smaller. Hence, the size of the filter candidate
55 e — set is O(k%), but it can be further reduced by working in

2 high dimension directly i£ has high dimensionalitfilterGen
(@) Consider only log,(A/d) (b) No two intervals of lengtit; shrinks each rectangl® € R to the MEB of subscriptions
different lengths. overlap by more thar; /2. contained byR and returnsR to FilterAssignHelper.

Fig. 5. Two main ideas for the rectangle generation step.

proportional to the number of brokers (we det= 5|B|).
We obtain these super-subscriptions by partition$nonto &

clusters and choosing the minimum enclosing bd¥XB) of The second step &LP, takes as input the preliminary filter
the subscriptions in each cluster. This clustering is done Assignment® produced byFilterAssign in Section IV-A, and

a joint network-event space, and captures geographical aighputes the subscriber assignmgnts — B, for the entire
topical concentration of interests. In the second steeatsof set of subscribers. Since the filters are already given, we ar

generatingD(k*?) rectangles, we use a hierarchical proceduigy; concerned with minimizing bandwidth here; instead, we
that generates fewer rectangles. The intuition is thatiéey  focus on load balance while ensuring that subscribers dge on
and load balancing constraints are not too tight, therenseso gssigned to brokers thabver them (recall the definition of
flexibility in assigning subscribers to brokers and the ffite «coyer” from Section IV-A.1, which considers both nesting
can be “loose.” The first step is relatively straightforwasde g4 latency constraints). Also, recall from Section Il tat
the technical report version [15] of this paper for detadile  anq 3, . are user-defined desired and maximum load balance
now describe the second step in more detail. factors (Ibfs), resp.; our goal is to find @ whose Ibf is no

In the second step, for each dimensione [1,d], we more thans, or else, close t@ and no more tham,,.y.
construct a sef; of intervals on ther;-axis. We sefR to be the  We formulate the computation &f as a max-flow problem.
Cartesian product of these sets, iR+~ {J1 x---xJy | Vi € We construct a bipartite grapfi = (V,E), whereV = 8§ U
[1,d] : J; € 3;}. It thus remains to describe the constructior {s,t}, E = Ey UE,UEs, E; = {(s,B) | B € B},
of ;. LetJ; be the set of: intervals that are the projection of &, = {(S,¢) | S € 8}, and E3 = {(B;, S;) | B; coverssS;}.
E onto thex;-axis. LetA be the length of the smallest intervalwe set the capacity of every edge By U E5 to 1, and the
containingJ;, and letd be the length of the smallest intervalcapacity of an edgés, B;) in E; to |3x;|8]]. Initially, we let
inJ;. Forl < j <log,(A/d), let¢; =275. (If A/dis large, g =3, but it may increase over time 6,ax.
we choos¢;’s more carefully.) For each, letJ;; C Ji bethe  \we compute the maximum flow from to ¢. Let f be the
set of intervals of length at mog§/2; our goal is generate a, 5jue of the maximum flow. If — |8, then every subscriber
set of intervalg];; of length at most;; such that every interval i, s s assigned to a broker, which can be identified by the
of J;; is contained by one id;;, and no two intervals ili;  eqge into the subscriber with flow of We return the resulting
overlap by more tham¢; (1/2 < n < 1; we usen = 1/2).  gypscriber assignment, which by construction has a Ibf of no
Figure 5 illustrates the ideas. more thang. If f < |8| and 8 = Bumax, We conclude that the

To avoid two intervals irf;; overlapping by more than/;, load balance constraint is too tight, and we stop.<4f |§| and
let £ be the set of left endpoints of intervals J;, sorted /5 < Bmax, We increase the value gfby a small factor, update
in increasing order. We scaf) from left to right and do the the capacity of the edges ifi;, and recompute the maximum
following. We take the first point, say, of £ and remove all flow from s to ¢. Depending on the maximum flow algorithm
points from £ that are within distancél — n)¢; from p. Let employed, as an optimization, we can reuse the current flow
J be the interval of lengtl; with p as its left endpoint. We as the starting flow for the increased valuefof

B. Subscription Assignment



C. Filter Adjustment V. MULTI-LEVEL SA

The third and last step oSLP; further adjusts the pre- We now describe an algorithm for SA when the broker tree
liminary filter assignment® = {i; on} made by T has multiple levels of brokers. One possible approach is

FilterAssign. Based on the subscriber assignmgnt§ — ® O first run the one-level algorithr8LP; (Section IV) over
made by the second step, this step opportunistically tightea” leaf brokers, and then compute the filters at the interior

the filters, and enforces the filter complexity constraiha(t "des ofT in a bottom-up manner. This approach has two
eachy; consists of no more tham rectangles). Consider eachdrawbacks. First, sibling brokers i may be assigned very

broker B; with preliminary filter ;. Let 8; C 8 be the set of diffgrent subscriptions, forcing a large filter at their g
subscribers assigned 8. We want to replace; by f;, a set which consumes a Iot. of bandw@th. Second, sgl\&h@’l' on

of no more than rectangles, such thidg s o5 € Upe, B a large set of brokers is computationally expensive. Intrec
andVol(Up,;, R) is minimized. The problem is NP-hard [16]broker trees often follow the topology of the underlying
in general, so we use a simple heuristic. Roughly speakififWork, so a top-down hierarchical approach will be effect
for each preliminary filter, we cluster its subscriptionstiie ~ OUr @lgorithm works by recursively applying the one-level
event space inta groups, and construct an alternative filteR'9°Tthm SLP1 to subtrees inJ" in a top-down manner. At

consisting ofx MEBS, one for each group. See [15] for details$aCch non-leaf brokes of T, we invokeSLP, to distribute
the subscribers amon@’s children, deciding in which subtree

_ _ of B each subscriber will be assigned. We then recursively
D. Discussion process each child with the set of subscriptions assigned to
the corresponding subtree.

To invoke SLP; over a set of non-leaf sibling brokers, we
I§ti|l need to address the issues of determining appropriate
latency and load balance constraints for assigning a siblescr
to these brokers—recall from Section Il that the actual laten
6? a subscriber depends on its leaf broker assignment, which
we have not made yet because of top-down processing; the
load balance constraints have only been defined for leaf
pﬁokers. See [15] for how to address these two issues.

SLP; involves solving an LP giverB, 8,, 8§, C §,, andR
(Section IV-A.1). The optimal LP fractional solution proés
a lower bound for the optimal bandwidth of subscriptio
assignment with respect &, and R. Randomized rounding
for the y;,’s would increase the expected bandwidth Bf
and expected filter complexity of each broker by a factor
21n |8, in the worst case, but since the size ofsacertificate
is independent ofS|, |S,] is likely much smaller thans|, so
the blow-up is closer to a small constant factor—as evide
from our empirical results. VI. EVALUATION

With Theorem 1 in the appendix, we show that there exists

a rounding scheme for;;’s such that the latency and nestinghiner Algorithms Tested. For comparison withGr, Gr*,
constraints are strictly enforced, and the expected lo&@hbe ) p, andSLP, we also consider other algorithms. The first
of a broker can be increased by a factor of at mbst|S.| one is a variant ofGr that ignores latency. (Note that it is
with respect to the random subsgt If [S,| is large enough, |ess sensible to ignore load balance, because there wowd be
the expected load is balanced with the entire set of subs’srlbstrong incentive to assign every subscriber to the sameebjok
by using existing theoretical results erapproximation. Since . Online Greedy without Latency ConsideratiofiGr.)
our max-flow bgsed algorithm o.ptimizes load balanging, the This algorithm works exactly lik&r, except that it d;(l)[.:)s
;f;;ltiﬂg fgf:g{:\%e;?ssﬁgTne?;rlrsngegﬁgggagefg igzgma the latency constraint in d_efining ca_mdidate broke_r sets. Th
) answer produced b¥r_, is useful in understanding how

The optimal filter assignment f& is also a filter assignment latency constraints affect attainable bandwidth

for 8, C §; therefore, the LP fractional solution, optimal with

respect tcS,, must be a lower bound for the optimal solutiorwe additionally consider other algorithms that ignore band

with respect toS. However, decreasing the cardinality @f width anq insteaq focus on some ot'her performance metrics.
can increase the fractional value. Note that the two steps'ﬁ we will see, likeGr-, these alg_orlthms do p_oorly on the
candidate filter generation are orthogonal to one another. ypetrics t_hey \gnore, but they_h_elp |I!ustra'Fe _the _mportam&

can prove that given the set of super-subscriptions, theipgu considering multiple metrics jointly in optimization.

of filters in the interval generalization step only degratiess  Closest Broker without Load BalancgClosest-). This

final fractional solution by a constant factor because for an algorithm resembles the one in [1]. It assigns each sub-
rectangle R excluded from the candidate filter s@ there  scriber to its closest leaf broker in the network space
exists a filter R’ € R such thatR C R’ and Vol(R) ~ (hence minimizing the last-hop latency). Ties are broken
Vol(R'). More precisely, if the first step is skipped, i.e. every arbitrarily.

subscription is a super-subscription, the fractional mu « Closest Broker(Closest). Like Closest—y, this algorithm
matches the lower bound of the optimal solution up to a small assigns each subscriber to its closest leaf broker. However
constant factor by Lemma 4. However, we cannot bound the once a broker has already been assigned the maximum
blow-up due to the super-subscription clustering steps i& i number of subscribers allowed by the user-specified maxi-
necessary trade-off between performance and effectisenes  mum Ibf 3,,,.., Closest drops it from further consideration.




« Best Load-Balanced AssignmentBalance). This algo-
rithm finds the assignment with the best possible Ibf
(possibly less than the user-specified desired Abfby
solving a max-flow problem. The graph construction is a
variant of the one in Section IV-B.
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Workloads. As discussed in Section |, it is important to
base evaluation on realistic workloads, but they are difficu
find. Our earlier work [6] addressed this issue by developing T
a workload generator based on publicly available statisiic RMS delay 8 15
Google Groups. Extrapolating from these statistics, theege

tor produces a baseline workload consistent with them, and ¢ o6
generate additional workloads that deviate in meaningaysv hlosest |
from the baseline. We use multiple workloads produced by +Balance
this generator (collectively referred to amrkload set #]) for
evaluation. The network locations are mapped to poinis$ ia
R%, and the subscriptions are rectanglesEia= R2. We vary
two factors—S, interest skewness in terms of popularity, and
Bl, number of broad interests (i.e., large rectangles)—betwee

the settings of L(ow) and H(igh). The baseline workload Y 3 10 10
from Google Groups resembles (IS:H, BI:L). The distribatio RMS delay 415 Total bandwidth
of subscribers across Asia, North America, and Europe i§g. 6. Overall comparison (one-level network, workload set #1).

4:1:4. The distribution of brokers across the network space .
is set to be roughly the same as that of the subscribers. through 7. For the load balance constraints, all leaf brokers

Workload set #2 designed to reproduce those used fd}ave equ_al capacity fractions. For workload set #1, therelsi
evaluation in [17], [18], [5], is based on observations 4ind maximum load balance factof$,and Simax, are1.5 and

the RSS feed popularity. A total of0 different interests 1.8, respectively. For workload set #2, since the subscribers

are generated and their popularity follows a Zipf distribat of an |_nteres_t are FeSt_”Cted to only a feV.V network locatjons
with exponent0.5. Each interest is mapped to a random unﬁubscrlberd|str|butlon is skewed §hdue to interest skewness.

\A;H]erefore, we seB and Bnax to more relaxed values ¢f.3

square inE. Given an interest, subscriber locations are dra ) . .
uniformly at random from 10 locations IN. In this workload and 2.5, respectively. For workload set #3, since subscriber
locations are random, we tightghto 1.3 and B, t0 1.5.

set, the subscriber interests are essentially topic-basetino : ! :
We compare the two greedy algorithms in Section Il and

notion of “proximity” is captured in either the event spaae o : . 2 . . .
the network space. the algorithms described earlier in this section togethigh w

Workload set #3is designed to mimic those used in [19],gIr‘cl):’kleffcr’];?ngr'llgvel_ﬁlrgkerar:.(imgfrk:)s‘flLIt:fo(r:o.rsm#g;fvrzl d4in
[20], [21]. We partition the event space int®0 grid cells. W ): quaity ution 1 u '

The center of a subscription is mapped to the center of onet‘a‘;mS of total bandwidth, subscriber delays, and broketdoa

the cells. To create hot spotsli) we rank the cells in random (e., numb('er' O.f subsgnbers asygnqd to each broker). For
order: the probability of picking a cell as a subscriptiontee non-deterministic algorithms, we do five runs and report the

follows a Zipf distribution with exponen®.5. There is also average (when applicable); we have found deviation in tesul

a set of predefined subscription widths. For each dimensiéﬂ,be insignificant.

the width of a subscription is chosen from this set according tion Quality for a One-Level Broker Network. In

to a Zipf distribution with exponent.5. Each subscriber the following, we havel00,000 subscribers to assign 0
is randomly located at one of the network locationsNn brokers attached directly Eo the publisher.

therefore, subscriber interests and locations are inakren

More details on how to generate these workload sets #pwerall Comparison: Figure 6.To get a quick overview, we
available in [15]. We focus on results for workload set #1 g3lot the result quality of each algorithm on workload set #1 a
it is more realistic; additional results are in [15]. a triangle whose vertices correspond to total bandwidtat ro

mean square (RMS) of delay across subscribers, and standard

Problem Settings. Unless otherwise specified, we use thdeviation (STDEV) of broker loads. The numbers reported
following settings for the SA problem. We set filter comptgxi are averaged over four workloads: (IS:L, BI:L), (IS:H, B);L
«a = 3. Latency constraints are specified usingnaximum (IS:L, BI:H), and (IS:H, BI:H).
delay of 0.3; the delay experienced by a subscrib&r under We see thaLP; andGr* do well in minimizing bandwidth
a subscriber assignmehtis defined to bey/A — 1, whereé  while bounding delay and load balanée.is worse: not only it
is the latency of the path iif U X from the publisher taS, incurs higher bandwidth, but it also produces very unbadnc
and A is latency of the shortest path from the publisheiSto loads (whileSLP; and Gr* stay right within the maximum
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TABLE |

Ibf). In fact, for all four workloadsGr fails to find a feasible
BANDWIDTH COMPARISON (WORKLOAD SET#1)

solution that satisfies the load balance constraints; hefets,

we report the best-effort solutions found By. We also tried (l\év_?_rkg’fg Frac“gg;'é;'”t'o” 7S|1‘2Pé9 6?3;E9 5 5G(;E9
variants of Gr: whenever we cannot assign a subscrier —is-H L) 1259 T86E9  153E9 | 2 09EQ
because all its candidate brokers are fully loaded, we rahdo (1S:C, BIH) 3.81E0 8.48E9| 7.79E9 | 1.05E10
remove some subscribers from these brokers to make roo(i6:H, BI:H) 1.29E9 2.13E9| 2.39E9| 2.78E9
for S;, and either reassign the removed subscribers next, or TABLE II
append them to the list of subscribers to be processed later. ganpwiDTH COMPARISON (OTHER WORKLOAD SETS
These variants still failed to find feasible solutions, ewéTen —workioad set| Eractional solution] SLP; Gr G
given longer time to run thaBLP;. #2 1.01E7 137E7| 8.5E6 250
On the bottom, we see algorithms that ignore one perfor-  #3 2.48E10 5.4E10| 5.3E10]| 5.09E10

mance criterion or another do poorly. By failing to considelipf ional soluti icallv implies that the basidth
subscriptions in the event spac€osest—;,, Closest, and ractional solution automatically implies that the

Balance incur huge bandwidth. By ignoring latency constraintgmieved byGr™ matches the lower bound (within a small

in the network spaceGr_; produces unacceptable delays(.:ons‘tant factor).

Closest, does okay with load balance in this case onlpe|ays: Figure 7(b). Here we show scatter plots of delay

because the broker and subscriber distributions are similgersus shortest path latency for selected algorithms (|

in generalClosest,’s load imbalance can be arbitrarily bad.g|:1): the results are similar for other workloads in worktb
One question that we set out to answer with these expggt #1 and for other workload sets. B&thP, andGr* are able

iments is whether, in practice, we could use the solution t§ bound delay ab.3 as requiredClosest_, is expected to do

a more tractable optimization problem that ignores some capell on delay, because it focuses exclusively on the network

straints as a (lower-bound) yardstick for gauging the quali  space. However, sincér_, ignores the network space, it has

the solution to the full Optimization prOblem. Here it is ate trouble Satisfying the |atency constraints; subscribear ihe

that Gr-, is not a good yardstick—compared with the othesyblisher are especially vulnerable as they may be assigned
algorithms, its bandwidth is just too low and too unreatisti faraway brokers that blow up delays significantly.

serve as a meaningful yardstick.

But then, how could we conclude that a solution is “gooBroker Loads: Figures 7(c) and 7(d)Figure 7(c) shows the
enough” with respect to the optimal? The solutionSafP;, boxplot of broker loads for each algorithm for (IS:H, BI:H);
though not guaranteed to be optimal, serves as a reasoniltfe results are similar for other workloads in workload set
indicator because ofLP,’s theoretical properties. Next, we#1. The two dashed horizontal lines show the maximum and
will see how a by-product of runnin§LP;, namely the LP desired load bounds corresponding Q.. and j, respec-
fractional solution (Section IV-D), can further help. tively. As expectedBalance is the bestClosest also does well

because the broker distributions roughly follow the suibscr
Bandwidth: Figure 7(a), Tables | and Il.In Figure 7(a), distributions in our workloadsClosest_y, is similar to Closest
we take a closer look at total bandwidth consumption acrosgt some brokers may still be overloaded becaGiegest_,
workload set #1. The relative ordering of the algorithms i8oes not enforce load balance constraints. Keep in mind,
fairly consistentSLP; andGr* are good and comparablér however, that these algorithms achieve good load balance at
is consistently worse (not to mention its solutions alsdat® the expense of huge bandwidth (Figure 7(a)). Other algosth
load balance constraints). Algorithms that ignore the tvesxhibit wider range of loads. As mentioned earli@rjs unable
space are the worst. Agaifiy— (barely visible in the figure) to satisfy the load balance constraints, 8uP+, Gr*, Gr_, do,
is just too good to be true or useful to the comparison.  with SLP, achieving a Ibf close to the desired setting.

Table | additionally shows the total bandwidth of the LP To have a closer look at the load distributions, we plot the
fractional solution obtained by runnin§LP;. Recall from cumulative distribution function (CDF) for selected algioms
Section IV-D that this solution provides a lower bound foe thin Figure 7(d). Gr, despite its best attempt at enforcing
attainable bandwidth (modulo the choice of candidate §ijterconstraints, leaves more thaf% of the brokers overloaded.
and the optimal bandwidth up to a small constant factor (if The results are also similar for the other two workload sets.
subscriptions are not first clustered into super-subsoripl. The maximum load ofsr exceedSimax by 39% and58% for
We see from the table that such solutions give much mafgrkload sets #2 and #3, respectively.
meaningful lower bounds tha@r_,. The fact thatSLP; and
Gr* perform within small factors (between3 and2.7) from  Solution Quality for a Multi-Level Broker Network. In
the fractional solution is a good indication that they parfo the following, we test workload set #1 and have0,000
very well with respect to the optimal. subscribers to assign to a multi-level network20f) brokers,

Table Il further shows the comparison for workload sets #&2here each internal broker has a maximum out-degree of
and #3. Here, the bandwidths of the LP fractional solutioi$. We also adjust the constraints to see how well different
indicate thatGr* performs well in both data sets. For workloadhalgorithms cope with them. In thigght latencysetting, we set
set #2, the fact that the bandwidth Gf* is smaller than the the maximum delay t0.2; to compensate, we set the desired
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Broker Loads: Figures 9(b).These figures show the results on
(IS:L, BI:H). Regardless of the latency settirfg),P satisfies
all constraints. On the other han@c*, despite its best effort,

o

05

S dely T o bandwicy RMSdelay 55 el bandwidi cannot enforce all load balance constraints under the tight
latency setting. A closer look at the broker load distribati
(b loose hown h Id | th haot% of th
Fig. 8. Overall (multi-level network, workload set #Ijght and (N0t shown here) would reveal that more thaio of the
looserefer to the tight and loose latency settings, resp. brokers are overloaded.

and maximum Ibfs tor and 8 (the minimum possible Ibf is Effect of Filter Complexity. Figure 10 shows the effect of

zrcl)un?G)l. Innéh;ahlo%se ilratjncnﬁe;img:,mwren Slt?;[ t;; mnilx{rgumthe filter complexity &) on the total bandwidth of solutions
elay tol, and the desired and maximum [bISIG andl.o. o) p G and Gr*. The workload is (IS:H, BI:H), with a

Overall Comparison: Figures 8(a) and 8(b)Similar to the one-level netvv_ork. As discussed_in Section I, a largemay _
results for a one-level network, algorithms that ignoreghent educe bandwidth, because multiple rectangles can suzenari
space Closest ., Closest, andBalance) incur high bandwidth, & Set of subscriptions more precisely than a single reatangl
while the algorithm that ignores the network spaGe.() pro- This effect is clgar and similar for aII.three algorithms. At
duces long delays. Agaifr_;'s bandwidth is too unrealistic to ("€ lowesta settings of1 and 2, SLP, is more vulnerable

* . H H 1
serve as a meaningful yardstick for other solutions. Tleesf than Gr and Gr™: a f||t§r may COI’ISISi.L of multlpile fargway
we omit these algorithms in subsequent comparisons. rectangles after rounding of the fractional solution; cowg

Under the | lat i dcr bl them with just one or two MEB may increase the filter volume
nder the loose latency settinGy andGr™ are comparable dramatically. Overallpe = 3 is reasonable for all algorithms; a

to SLP, and Gr” actually achieves slightly lower banOIV‘”dthlargera increases storage and processing overhead at a broker

than SI*_P._Under the tight Ia_tency se_tting, howe_ve_r, bdin agwd its parent, and has diminishing effect on bandwidth.
andGr™” fail to produce a feasible solution that satisfies the loa

balance constraints (like what happenedtdor the one-level
network). Since the solution quality &r* dominates that of
Gr, we also omitGr in subsequent comparisons.

Running Time of SLP. We measure the wall-clock time
of running SLP on a Dell OptiPlex 960 desktop with Intel
Core2 Duo CPU EB500 &.16GHz, 6144KB of cache, and

Bandwidth: Figures 9(a). Interestingly, for all but one of the 8GB of memory. The LP solver is CPLEX Version 10. A
eight workloadsSLP underperformsGr*. One explanation is 'Un With one million subscribers ant)0 brokers in a single-
that subscribers have too few choices of brokers underghe ti'€vel network takes about3 hours. A run with one million

latency setting, and too many choices under the loose gettiﬁubscribers an@00 brokers in a multi-level netwgrk takes
in either caseSLP has little advantage oveBr*. However about4 hours (faster because each callSioP;, here involves

note that the comparison under the tight latency setting fR\ fewer thanl00 brokers). Figure 11 shows how the number
misleading, becausér* is unable to satisfy the load balance?f subscribers impacts the running time SiP.

constraints, whil&SLP does. Under the loose latency setting, In sum, for realistic problem sizeS|.P has manageable run-
two algorithms actually have more similar performance.  ning time on mid-range hardware. Whi#&.P is by no means
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. a e qf supscribers vyhose Iaten(;y constraints are satisfiecbutith
 aooens L\ > — violating bandwidth constraints.
glua&og,% o B2 Another line of research focuses on self-organizing, dis-
8 200605 | =G Tl o— tributed algorithms that dynamically reconfigure the netwo
S S B o topology to optimize specific measures. Baldoni et al. [24]
B 0 minimize the number of hops and let subscribers be spread
" rersompledty 10 e e e yniformly among brokers. Jaeger et al. [25] minimize total
Fig. 10. Effect of filter complex- Fig. 11. Running time oSLP Processing and communication costs (excluding last-hep la
ity (one-level network). (multi-level network). tencies between brokers and subscribers). The distribatio

subscribers to brokers is chosen probabilistically adogrd
to a random load value. Papaemmanouil et al. [5] present
a general optimization framework that iteratively impreve
gerformance, starting by randomly attaching subscribera t
node. Understanding the robustness and global optimality o
such algorithms has been challenging. We complement this
line of research by providing a yardstick for evaluationt tisa
Scomputationally feasible over more realistic problem size
Distributed stream processing is also related to our work.
Stream processing systems process and aggregate data over &
network of machines, and one key issue is how to optimally

reaffirm the relative robustness SEP across constraints and t o th t of hi 26
workloads, and verify our settings of parameters. Becatﬂsepéace query operators onto the Set ol machines (see [26]
for overview and [27], [18] for more recent development).

limited space, see [15] for the results of these experiments L .
However, the number of queries involved in the operator

Discussion. One take-way point from these experiments iglacement problem is orders of magnitude smaller than the
that Gr* works well on many (though not all) workloads number of subscribers in the subscriber assignment problem
including fairly realistic ones generated from statistms ~ 'N€re iS a vast body of literature on network design in
Google Groups. What is more important, however, is whggneral. Problems that resemble ours to various extentdacl
allows us to draw this conclusion. Solutions obtained KT €xample, the minimum steiner tree problem, the weighted
algorithms that ignore any performance criterion are ndf€iner tree packing problem, and content distributiomoek
helpful—not only do they tend to fare terribly on criterigd€Sign. Additional discussion can be found in [15].

they ignore, but they also cannot offer meaningful bounds on VIIl. CONCLUSION AND FUTURE WORK

what can be realistically achieved. On the other hand, our LP ) )
based approach is a better yardstick for evaluating diftere N this paper we have present8tiP, a LP-based algorithm
algorithms. While we cannot guarantee the optimalitglop,, 07 SA, the subscriber assignment problem for wide-area
we have more assurance of its solution quality (Section )V_ﬁontent—based publish/subscrils&.P considers the subscriber

across problem instances. Furthermore, the fractionatieal diStribution in both event and network spaces to minimize
it produces gives us another indicator of optimality thafais banQW|dth while satllsfylng Iaancy and .Io'ad balance con-
more useful than, say, whér_, offers. straints. To ensure its scalability to realistic problemesi

One might wonder iGr* works well in general. It does not. SLP employs a suite of techniques, including LP relaxation,

We have already seen that it has trouble with load balance Céﬁnd;)r;rlzed q rour_1d|ng, c?re_set, sampling, and max-flow, to
straints under the tight latency setting. Furthermorel&i,[we caretully rle uce ItShCOTfF exity. bl b df
show that there are several instances for which performs . AS @ solution to the offline SA problerSLP can be used for
orders of magnitude worse th&hP. These examples further'n't'al subscriber assignment and periodical re-optiriiza

illustrate the importance of developing better yardstifds More importantly, because of its better theoretical proper
evaluating algorithms for SA and robustness to workload variatiorsd,P serves as a rea-

sonable yardstick for evaluating simpler heuristic aldons
across realistic workloads in both online and offline sg#in
Using this yardstick, we have shown that a simple and efficien

Dissemination network design for publish/subscribe hageedy algorithmGr*, works well for a number of workloads.
received much attention in the past few years. As discussedmpared with previous work, we have pushed the sophis-
in Section I, some previous work considers either subgoript tication and scale of evaluation workloads to new heights.
similarity in the event space (e.g., [2]) or subscriber tmra While future work on improving the theoretical guarantees
in the network space [1] while ignoring the other aspeodf such yardsticks is still needed, we hope researchers will
Other performance objectives and constraints have also flbel SLP and/or its ideas useful in evaluating algorithms for
considered in subscriber assignment. Shah et al. [22] m&A and similar problems, where the optimal solutions remain
imize data fidelity. Tarig et al. [23] maximize the numbecomputationally elusive.

a fast algorithm, its solution quality makes it well worthiveh
especially as a yardstick to gauge other algorithms.

Other Results. We have experimented with other scenario
by varying constraints (e.g., bounding last-hop latensyaad
of path latency), workload characteristics (e.g., broksirithu-
tion in the network space), and choices of parameterSliér
(size of |S;| (Section IV-A.2), number of super-subscription
in candidate filter generation (Section 1V-A.3), and thidh
7 for the multi-level algorithm (Section V). These experirten

VII. RELATED WORK



There are two immediate directions for future work. First,[7]
a principled approach is still much needed for the dynamic
version of the subscriber assignment problem, where sipbscr
tions come and go. Second, it would be good to drop thés]
assumption that a broker tree is given in advance, and yointlgj
optimize subscriber assignment, broker placement, asasell
the dissemination network topology. (10]
Acknowledgment. This work is supported by NSF grants 1]
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APPENDIX (13]

Because of space constraints, see [15] for omitted proofs.

Lemma 1 (Size of coreset for filter assignmeritiere ex-
ists ane-certificateQ C 8 of size O((n1n(A/€))?4"), where
A is proportional to the ratio of the volume AEB(S) to
the volume of the smallest subscription.

Lemma 2 (Number of iterations)f no certificate is found
after 4g1n(|8|/g) iterations, the size of a certificate must be
greater thary. [16]

Lemma 3 (Probability of valid round)Let Q be a random
sample of sizezgIn g, and ® be the set of filters assigned to
B to coverQ. Let 8’ be a set of subscriptions not covered by17]
®. The probability thatiW(8') > eW(8) is at most 1/2 by
choosing a sufficently large constant

Lemma 4 (Goodness of candidate filterket R* be the
set of O(k??) rectangles, where each rectangle is the minimum
enclosing box of a subset of thie subscriptions. For each[19]
rectangleR € R* \ R, there exists a rectangl®’ € R, such
that R ¢ R’ and Vol(R’') < 4% Vol(R).

Theorem 1 (Solution quality &fLP,): With probability at [20]
least1/2, the algorithm, without the optional step of merging
subscriptions into super-subscriptions, returns a sitecr
assignment with the following properites: 1) The expectdd]
bandwidth is at mose1n [S,|OPT, 2) latency and nesting
constraints properties are strictly enforced, and 3) tipeeted [22]
filter complexity constraints are violated by a factor of aigh
2In8,|.

[14]

[15]

[18]

[23]
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