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Abstract— We study the problem of assigning subscribers to
brokers in a wide-area content-based publish/subscribe system.
A good assignment should consider both subscriber interests in
the event space and subscriber locations in the network space,
and balance multiple performance criteria including bandwidth,
delay, and load balance. The resulting optimization problem is
NP-complete, so systems have turned to heuristics and/or simpler
algorithms that ignore some performance criteria. Evaluating
these approaches has been challenging because optimal solutions
remain elusive for realistic problem sizes. To enable proper
evaluation, we develop a Monte Carlo approximation algorithm
with good theoretical properties and robustness to workload
variations. To make it computationally feasible, we combine the
ideas of linear programming, randomized rounding, coreset, and
iterative reweighted sampling. We demonstrate how to use this
algorithm as a yardstick to evaluate other algorithms, and why
it is better than other choices of yardsticks. With its help, we
show that a simple greedy algorithm works well for a number
of workloads, including one generated from publicly available
statistics on Google Groups. We hope that our algorithms are
not only useful in their own right, but our principled approach
toward evaluation will also be useful in future evaluation of
solutions to similar problems in content-based publish/subscribe.

I. I NTRODUCTION

A wide-area publish/subscribe system typically consists of
an overlay network ofbrokers. Eventsoriginate frompublish-
ers, and are delivered by the brokers to interestedsubscribers.
Traditional publish/subscribe istopic-based, where subscribers
subscribe to a set of predefined topics such as “Apple news”
or “American Idol.” Content-basedpublish/subscribe, on the
other hand, allows a subscriber to express an interest as a
Boolean predicate against values of attributes inside events.
For example, a subscriber may subscribe to eBay antique
auctions with seller rating higher than 90% and starting bidbe-
tween $100 and $200. Only events matching the predicate will
be delivered to the subscriber. Content-based publish/subscribe
is of interest to both database and networking communities [1],
[2], [3], [4], because it must address the dual challenges ofsub-
scription matching in an event space and event dissemination
in the network space.

An important problem in content-based publish/subscribe is
subscriber assignment. Each subscriber needs to be assigned
a broker responsible for forwarding matching events to this
subscriber. Intuitively, we would like to assign subscribers with
similar interests to the same broker, so that an event delivered
to the broker could serve multiple subscribers simultaneously.
If all subscribers assigned to the broker have similar interests,
then only a subset of all possible events needs to go through

the broker. At the same time, we may not want to assign a
subscriber to a broker located far away in the network, because
doing so increases delivery latency and communication cost.
Finally, we should not assign too many subscribers to a single
broker, which creates a performance bottleneck and delays
event delivery. Balancing these considerations—similarity of
interests in the event space, proximity of locations in the
network space, and balance of load across brokers—is a
difficult optimization problem.

The Need for a Yardstick. There is a good amount of
previous work on subscriber assignment and related problems;
see Section VII for details. Most approaches ignore some
aspects of the problem or employ heuristic algorithms. For
example, Aguilera et al. [1] assign subscribers to their closest
brokers in the network, ignoring subscriber interests. On the
other hand, Diao et al. [2] make assignment based on similarity
of interests, without considering network latency. Papaem-
manouil et al. [5] present a general optimization framework
that considers multiple performance criteria, but relies on an
iterative method to explore the solution space through local
adjustments of dissemination trees.

It is understandable and often necessary to employ heuristics
for subscriber assignment, because the problem in general is
NP-complete. Evaluating these heuristics, however, is frustrat-
ingly difficult. How close are their solutions to the optimal?
How well do they work on large, realistic workloads? Because
of the problem’s inherent complexity, optimal solutions for
realistic problem sizes are computationally elusive and often
unavailable for comparison. What would be a good yardstick
then? Could yardsticks be solutions to simpler problems that
ignore some performance constraints, since they are easierto
compute and can act as lower bounds for the optimal solution?

Our Contributions. A main goal of this paper is to propose
a better yardstick for evaluating the performance of various
algorithms for the subscriber assignment problem. Our pro-
posal is an algorithm calledSLP, a shorthand forSubscriber
Assignment byLinear Programming. SLP jointly considers
both subscriber interests in the event space and subscriber
locations in the network space, and balances multiple perfor-
mance criteria including bandwidth, delay, and load balance.
While SLP’s solution is not guaranteed to be optimal, it has
provable properties that make it robust to workload variations,
and reasonable as a yardstick for evaluating other algorithms.



Moreover, a by-product of runningSLP (the LP fractional
solution) gives us another useful indicator of how close a
solution is to the optimal.

We also presentGr⋆, a simple offline greedy algorithm
for subscriber assignment that presorts the subscribers ina
particular way before assigning them one by one. Using
SLP as a yardstick, we evaluateGr⋆ and a number of other
algorithms. With the help ofSLP, we are able to conclude,
with confidence, thatGr⋆ works very well for most (but not
all) of the workloads tested. Our evaluation also reveals that
simpler algorithms that ignore one performance criterion or
another are poor yardsticks, because their solution cannotoffer
meaningful bounds on what can be realistically achieved when
considering all constraints.

Another major obstacle for evaluation is the lack of pub-
licly available, realistic workloads for content-based pub-
lish/subscribe. Information about user subscriptions (interests
and locations) is rarely disclosed because of privacy concerns
and commercial interests. Lack of widely deployed systems
with powerful subscription languages also contributes to the
difficulty. Thus, researchers have often resorted to synthe-
sized workloads. However, simplistic workload generatorsrun
the risk of missing interesting patterns of clustering and
overlap among subscriber interests, and correlations between
subscriber interests and locations, which may influence the
evaluation of subscriber assignment algorithms. Therefore,
beyond simple synthetic workloads used for evaluation by pre-
vious work, we also evaluate our algorithms using workloads
we generate [6] from publicly available statistics on Google
Groups, which we believe to be closer to (at least one) reality.
SLP is computationally feasible on realistic problem sizes;

we have run it on workloads consisting of hundreds of
brokers and a million subscribers. We makeSLP scalable
by combining a suite of techniques, including randomized
rounding, coreset, and iterative reweighted sampling. While
SLP is slower than the simpler algorithms, its solution quality
makes it well worthwhile in some settings, such as initial sub-
scriber assignment, periodical re-optimization, and especially
comparison with and evaluation of other algorithms.

II. PROBLEM STATEMENT

Let N denote thenetwork space. Although our algorithm
works on any metric space, for simplicity, we assume thatN

is a multi-dimensional Euclidean space, obtained by standard
Internet embedding techniques [7], [8], [9]; Euclidean distance
between two points approximates the network latency between
them. LetP ∈ N be thepublisherandS = {S1, · · · , Sm} ⊆ N

be a set ofm subscribers.
P publishesevents, each of which is represented as a point

in the event spaceE. We assumeE to be thed-dimensional
Euclidean spaceRd. Each subscriberSi has asubscription
σi ⊆ E,1 which we assume to be ad-dimensional rectangle.
Si receives an evente ∈ E if e ∈ σi.

1Without loss of generality, we assume one subscription per
subscriber; an individual with multiple subscriptions can be modeled
as multiple subscribers located at the same point inN.

To disseminate events, we use a setB = {B1, · · · , Bn} ⊆
N of n brokers. P and B together form adissemination
network, which we assume to be a treeT rooted atP . A leaf of
T is called aleaf broker. A subscriber assignmentΣ : S → B

connects each subscriber to a leaf broker.

Filters. Each brokerBi is associated with afilter fi ⊆ E

such that if a brokerBj (resp. subscriberSj) is a descendant
of Bi, then fj ⊆ fi (resp.σj ⊆ fi). We call this condition
the nesting condition. An event e is passed to a brokerBi

from its parent ife ∈ fi. To ensure simplicity and efficiency
in implementing this forwarding logic, we requirefi to be
the union of at mostα rectangles, for some small constantα
which we callfilter complexity. In the special case ofα = 1,
T ∪ Σ becomes a bounding box hierarchy like an R-tree. We
will, however, allowα > 1.

Bandwidth. We are interested in minimizingQ(T), the
expected total bandwidth consumption(or bandwidthfor short)
of T. Q(T) =

∑
Bi∈B

Q(Bi), whereQ(Bi) is the expected
bandwidthinto brokerBi. (We ignore the bandwidth required
for leaf brokers to deliver events to subscribers because the
total does not depend on the subscriber assignment.) When
events are uniformly distributed,Q(Bi) = Vol(fi). Our
approach can be extended to a non-uniform event distribution
π, in which caseQ(Bi) =

∫
fi
π(e)de.

Choosingα > 1 can reduce bandwidth into a broker, as
multiple rectangles can summarize child filters or subscriptions
more precisely than a single rectangle, at the cost of increasing
storage and processing overhead at the broker.

Latency. We want to bound the latency of delivering events
to each subscriberSj . We make a natural requirement in
this paper: for a subscriber assignmentΣ to be valid, the
network latency of the path inT ∪ Σ from the publisher to
each subscriberSj must not exceed the user-definedmaximum
allowable latencyδj for Sj . Here, the path latency is the sum
of distances inN between consecutive points on the path.

Our approach can be extended to handle other form of
latency constraints, such as one that bounds only the last-
hop latency to each subscriber (from the broker it is assigned
to). More sophisticated constraints that account for broker
processing delays can be enforced by additionally imposing
load balance constraints described below.

Load Balance. We also want to ensure that not too many
subscribers are assigned to one leaf broker. Without loss of
generality, assume thatB1, · · · , Bl are thel leaf brokers inB.
Each leaf brokerBi is associated with a user-definedcapacity
fraction κi ∈ [0, 1], such that

∑l

i=1
κi = 1. Perfect load bal-

ance happens when eachBi is assignedκim subscribers, but it
is unnecessary and often undesirable as it may sacrifice other
performance measures. Letmi be the number of subscribers
assigned to leaf brokerBi; we call max1≤i≤l

mi

κim
the load

balance factor(lbf ) of the assignment. We allow the user
to cap the lbf atβmax and specify adesired lbf β, where



βmax > β > 1. We try to find an assignment with lbf within
β; failing that, we try to find an assignment with lbf within
βmax and as close toβ as possible. The pair(β, βmax) allows
the user to encourage load balance towards the desired level
without rewarding assignments that “over-balance.”

The Problem. The subscriber assignment problem(SA) is
defined as follows: GivenP , B, S, T, maximum allowable
latenciesδ = {δ1, . . . , δm}, leaf broker capacity fractionsκ =
{κ1, . . . , κl}, as well as parametersα, β, andβmax, compute
an assignmentΣ : S → B and filters for all brokers, such
that the latency constraint is satisfied at each subscriber,the
nesting condition is satisfied by all filters (each with no more
than α rectangles), and the load balance factor is no more
thanβ (or as close toβ as possible and no more thanβmax).
The assignment with the minimum expected total bandwidth
Q(T) will be returned. By reducing the standard set cover
problem [10] to SA, we can show that SA is NP-complete.

III. T WO GREEDY ALGORITHMS

We first present two simple greedy algorithms for SA, both
aimed at minimizing bandwidth while meeting latency and
load balance constraints.

The first algorithm,Online Greedy(Gr), assigns subscribers
sequentially to leaf brokers, without having the entire setof
subscribers available from the start. It considers the effect of
incorporating the new subscription into existing filters inthe
event space, in a way similar to R-tree splitting heuristics. For
each subscriberSj ∈ S, we define thecostof assigningSj to
a leaf brokerBi to be the sum of least volume enlargement
of filters over the path inT from the publisher toBi, such
that the nesting condition is preserved.Gr identifies a set of
candidate brokers(defined below) forSj , and then greedily
assignsSj to the candidate broker with the minimum cost. We
break a tie by choosing the least loaded broker (i.e., one with
the minimum mi

κi|S|
, wheremi is the number of subscribers

already assigned to it).
Bi is a candidate brokerfor Sj if the following conditions

are met: 1) AssigningSj to Bi satisfies the user-defined
latency constraint; 2)Bj will not be overloaded by this
assignment; i.e.,mi+1

κi|S|
, is no more than a user-specified lbf.

(This lbf can be set initially toβ; it can be increased if no
feasible solution is found, eventually toβmax.)

The second algorithm,Offline Greedy(Gr⋆), is an offline
and more expensive variant ofGr. Each subscriber is processed
in the exact same way asGr. However,Gr⋆ first sorts and
then processes the set of subscribers in ascending order of
the cardinality of their candidate broker sets. Intuitively, by
deferring the processing of subscribers with more choices,
we reduce the chance thatGr⋆ will be forced into a costly
decision due to lack of choices. Note that the assignment of
earlier subscribers may restrict the choices available to later
subscribers; hence,Gr⋆ updates the ordering of remaining
subscribers whenever a broker becomes fully loaded. As we
will see in Section VI,Gr⋆ not only consumes lower bandwidth
thanGr but also produces much more balanced loads thanGr.

IV. ONE-LEVEL SA

We now turn to a more sophisticated algorithm,SLP. In
this section we describeSLP1, the one-level version of SA, in
which all brokers are directly connected to the publisher inT.
In Section V, we extend our solution to a multi-levelT.

Although SA can be written as an integer program, solving
it directly is not computationally tractable even for the one
level version. Realistic workloads involving hundreds of thou-
sands of subscribers easily overwhelm the most sophisticated
solvers. To tame the complexity of the problem, we first solve
a carefully simplified problem to obtain a preliminary, but
nonetheless good, assignment of filters to brokers; we then
use it to derive the final solution to the full problem. The
three-step strategy, illustrated in Figure 1, is as follows.

Subscription sampling (IV-A.2)

LP relaxation (IV-A.1)

All subs covered?

Filter adjustment (IV-C)

Candidate filter generation (IV-A.3)

Input subscriptions

Candidate filters

No

Yes

Assigning subscriptions with max-flow (IV-B)

Subscription subset

Preliminary filter for each broker (Φ)

Preliminary filter for each broker (Φ)

Subscription assignment
(Σ) Final filter for each broker (F)

Fig. 1. Overview ofSLP1.

1) Preliminary filter assignment.The heart ofSLP1, this
step produces a preliminary filter assignmentΦ =
{ϕ1, . . . , ϕm}, where each brokerBi is assigned a filterϕi.
As motivated, this step considers all factors simultaneously
in optimization—bandwidth, latency, and load balance—
using LP relaxation and randomized rounding. To keep the
size of the LP under control, instead of optimizing directly
with all subscriptions and all possible filters, we choose
representative sets (coresets) of subscriptions and candidate
filters to consider in an iterative fashion.

2) Subscription assignment.Given the preliminary filter as-
signmentΦ, this step considers the full set of subscriptions
and computes the subscriber assignmentΣ : S → B.
Since the filters are already given, this step focuses on
load balancing while meeting latency constraints, using a
max-flow algorithm.

3) Filter adjustment.GivenΦ andΣ, this step further refines
the filters and enforces the maximum filter complexity.
Let F = {f1, · · · , fn} be the resulting set of filters. The
algorithm returnsΣ andF.

A. Preliminary Filter Assignment

We present the first step ofSLP1, FilterAssign(B, S) (Algo-
rithm 1). We begin in Section IV-A.1 by describingLPRelax,



Algorithm 1: Preliminary filter assignment algorithm.

1 FilterAssign(B, S) begin
2 g ← 4;
3 while g ≤ |S| do
4 foreach S ∈ S do w(S)← 1;
5 q ← 10g ln g;
6 for i← 1 to 4g ln(|S|/g) do
7 repeat
8 Q← Random(S, w, q);
9 Φ← FilterAssignHelper(Q,B, S);

10 if Φ = ⊥ then return ⊥;
11 if Violate((1 + ε)Φ,B, S) = ∅ then
12 return (1 + ε)Φ;

13 V← Violate(Φ,B, S);
14 until

∑
S∈V

w(S) ≤ ε
∑

S∈S
w(S);

15 foreach S ∈ V do w(S)← 2w(S);

16 g ← 2g;

17 return ⊥;

18 FilterAssignHelper(Q,B, S) begin
19 for j ← 0 to ln |S| do
20 Sb ← Random(S,1, 10|B|);
21 Sa ← Q ∪ Sb;
22 R← FilterGen(Sa);
23 Φ← LPRelax(B,R, Sa, Sb);
24 if Φ 6= ⊥ then return Φ;

25 return ⊥;

a subroutine for computing a filter assignment using LP
relaxation. Calling this subroutine with all subscriptions and
all possible filters is impractical. Therefore, in Section IV-
A.2, we use iterative reweighted sampling to obtain a coreset
of subscriptions to runLPRelax with. In Section IV-A.3, we
present a method for choosing a good subset of candidate
filters to be considered byLPRelax.

1) LP Relaxation: We first describeLPRelax(B,R, Sa, Sb),
which assigns each brokerBi ∈ B a filter consisting of
rectangles inE drawn from a given setR = {R1, · · · , Ru}.
Sa denotes the subset ofS considered byLPRelax; Sb ⊆
Sa denotes the subset for whichLPRelax enforces the load
balance constraint (see (C3) below). Intuitively, we wouldlike
Sa = Sb = S and letR contain the minimum enclosing box
of each non-empty subset of the subscriptions, but this would
make the algorithm quite expensive in practice. We carefully
choose a subsetSa ⊆ S so that a filter assignment with respect
to Sa is also good with respect to the entire setS, and choose
a subsetSb ⊆ Sa to facilitate load balancing. We address
how to chooseSa and Sb (and why to distinguish them) in
Section IV-A.2, and how to chooseR in Section IV-A.3.

For each subscriberSj ∈ Sa, let Bj ⊆ B be the subset of
brokers that satisfy the user-defined latency constraint for Sj

if Sj is assigned to them; letRj = {Rk | σj ⊆ Rk ∈ R}, i.e.,
the subset of given rectangles that containSj ’s subscription.

We formulate SA as a mixed integer program. We introduce
two sets of Boolean variablesxij , yik ∈ {0, 1} for i ∈ [1, n],
j ∈ {j | Sj ∈ Sa}, andk ∈ [1, u], where

• xij = 1 iff subscriberSj is assigned to brokerBi, and

• yik = 1 iff rectangleRk is assigned toBi as part of its
filter.

The objective is to minimize
∑

Bi∈B,Rk∈R
Vol(Rk)yik,2 sub-

ject to the following constraints:

(C1) [Filter complexity] Each broker is assigned a filter
consisting of at mostα rectangles:∑

Rk∈R
yik ≤ α ∀Bi ∈ B.

(C2) [Assignment and latency] Each subscriber is assigned to
at least one broker meeting the latency constraint:∑

Bi∈Bj
xij ≥ 1 ∀Sj ∈ Sa.

(C3) [Load balance] The load balance factor is at mostβ:∑
Sj∈Sb

xij ≤ βκi|Sb| ∀Bi ∈ B.

(C4) [Nesting] A subscription can only be assigned to a broker
whose filter contains it:∑

Rk∈Rj
yik ≥ xij ∀Sj ∈ Sa, ∀Bi ∈ Bj .

By relaxing the values of Boolean variables to be real
numbers (i.e.,xij , yik ∈ [0, 1]), the above mixed integer
program can be reduced to an LP. Using an LP algorithm,
we compute the optimal fractional solution, and then apply
randomized rounding [10] to construct a solution to the filter-
assignment problem. Specifically, for eachyik, supposeŷik
is its value in the optional fractional solution. We setyik
to 1 with probability 1 − (1 − ŷik)

2 ln |Sa|, or 0 otherwise.
The resulting filter assignment isΦ = {ϕ1, . . . , ϕn}, where
ϕi = {Rk | yik = 1}.

Before returningΦ as a preliminary filter assignment,
LPRelax further verifies thatΦ coversSa. More precisely, we
say that a subscriberSj is coveredby a filter assignment if
there exists a brokerBi with assigned filterϕi such thatSj ’s
subscriptionσj is contained in one of the rectangles ofϕi,
and the assignment ofSj to Bi satisfies the latency constraint
for Sj . A set of subscribers iscoveredby a filter assignment if
every subscriber in the set is covered. If it happens thatΦ does
not coverSa, LPRelax performs randomized rounding again
for the yik ’s to generate a newΦ. The scheme guarantees to
produce aΦ coveringSa with probability at least1/2.

Remark. Because of rounding,ϕi may contain more than
α rectangles; this violation is okay for now—recall from the
beginning of Section IV that the goal of our first step in
SLP1 is not thefinal filter assignment, but a good, preliminary
assignment to guide the reminding steps; in Section IV-C we
will fix such violations.

Note that we could also apply randomized rounding toxij ’s
and obtain a subscriber assignment forSa, but the resulting
assignment may violate constraints due to rounding, and it is
not the goal of this step of our algorithm.

2) Subscription Sampling: If we input all subscribers as
Sa andSb to LPRelax, the size of LP in Section IV-A.1 will be
too large even for moderate number of subscribers. Therefore,

2If filters consist of more than one rectangle (α > 1), this objective
function computes the sum of volumes of these rectangles instead of
the volume of their union. We choose this function because it is
simpler and discourages choosing overlapping rectangles for filters.
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Fig. 2. (a) Coreset members are drawn with thick outlines; (b) filters
covering the coreset areε-expanded to cover all subscriptions.

(a) Super-subscriptions (b) Rectangle generation

Fig. 3. Illustration of candidate filter generation.

we present a method to reduce the number of subscribers to
input to LPRelax. This method combines two ideas:

• Coreset: For a wide range of geometric optimization prob-
lems, there exists a small subset (coreset) of the input
objects such that the solution for this subset is a good
approximation of the solution for the entire input [11].
Here, we show that for filter assignment, a small coreset
of S exists and can be computed quickly.

• Iterative reweighted sampling: This idea has been previ-
ously used for problems such as linear programming [12],
set cover [13], and computing coresets [14]. Here, we apply
it to coreset computation for filter assignment.

We begin with a few definitions. For a rectangleR =∏d

i=1
[li, hi], the ε-expansionof R, denoted by(1 + ε)R,

is
∏d

i=1
[li − ε(hi − li)/2, hi + ε(hi − li)/2]. Similarly, the

ε-expansionof a filter ϕ = {R1, . . . , Rα} is (1 + ε)ϕ =
{(1 + ε)R1, . . . , (1 + ε)Rα}. Let Φ = {ϕ1, · · · , ϕn} be a
filter assignment toB, with ϕi being the filter associated with
Bi, and let(1+ ε)Φ = {(1+ ε)ϕ1, . . . , (1+ ε)ϕn}. We call a
subsetQ ⊆ S anε-certificateif, for any filter assignmentΦ that
coversQ, (1 + ε)Φ coversS (recall the definition of “cover”
from Section IV-A.1). We illustrate the notion of coreset in
Figure 2. Lemma 1 in the appendix shows that there is always
an ε-certificate whose size is independent of|S| although the
worst case bound is exponential in|B|. The size of anε-
certificate is likely to be much smaller in practice—as evident
from our empirical results.

We now describeFilterAssign(B, S) (Algorithm 1), for
computing a preliminary filter assignment using the ideas
above. If we know there exists anε-certificate of sizeg,
then an iterative reweighted sampling scheme computes anε-
certificate of sizeO(g ln g) in O(g ln |S|) iterations (Lemma 2
in the appendix). Without knowingg in advance,FilterAssign
performs an exponential search ong, running O(g ln |S|)
iterations for a value ofg and then doublingg.

Each stage of the search targets a specificg and consists
of multiple valid iterations.3 We maintain a weight for each
subscriber inS, initialized to 1 at the beginning of the stage.
Each iteration chooses a random subsetQ ⊆ S of size
O(g ln g), where each subscriber is chosen with probability
proportional to its weight. We compute a filter assignment
for Q using a helper procedureFilterAssignHelper described
below. If the procedure finds an assignmentΦ (by calling
LPRelax), we check whether(1 + ε)Φ covers the entireS.
If yes,FilterAssign stops and returns(1+ ε)Φ. Otherwise, we
double the weight of each subscriber not covered byΦ, and
begin a new iteration. An example is shown in Figure 4. If the
number of valid iterations for the stage exceeds4g ln(|S|/g),
we conclude that theε-certificate has size larger thang (by
Lemma 2), and we move on to the next stage.
FilterAssignHelper, invoked by the inner loop of

FilterAssign, further prepares the input for and calls
LPRelax. The ε-certificateQ that we look for inFilterAssign
is intended for the problem of coveringS, but sinceLPRelax
considers coverage and load balance jointly, we must also
ensure that our input toLPRelax properly reflects the
properties ofS relevant to load balancing. To this end, we
choose a random subsetSb ⊆ S of size proportional to|B|
(we use10|B| for the practical sizes ofB we consider). We
call LPRelax with Sa = Q ∪ Sb, and R = FilterGen(Sa),
whereFilterGen is the candidate filter generation procedure
to be described in Section IV-A.3. To guard against the small
possibility that a random choice ofSb makes the otherwise
feasible optimization problem infeasible, we repeat with a
new choice ofSb (up to a small number of times) ifLPRelax
fails to find a feasible solution.

3) Candidate Filter Generation: We now describe the
procedureFilterGen for constructing the setR of rectangles to
be used byLPRelax to form filters. Without loss of generality,
let S = {S1, · · · , Sm} denote the set of subscribers given as
input to FilterGen (in reality, a subset may be given instead),
and letσi denoteSi’s subscription (a rectangle inRd). Each
rectangle inR is intended to contain a subset ofS. There are
Ω(m2d) rectangles, each of which contains a distinct subset.4

However, this many rectangles makeLPRelax impractical.
Therefore, we take two steps (see Figure 3) to ensure

that R is small yet provides good coverage. The first step
is optional. Here, we replace the input subscriptions with a
set Ξ = {ξ1, · · · , ξk} of k super-subscriptions, where k is

3This validity condition is needed to establish the termination
condition of an iteration (Line 14 of Algorithm 1). Avalid iteration
is one where the ratio of the total weight of uncovered subscribers to
that of all subscribers is no more thanε. By random sampling theory
(Lemma 3 in the appendix), an iteration is valid with probability at
least1/2, so we can simply repeat an iteration until it is valid.

4This lower bound is tight. In the case ofd = 1, each subscription
is an interval. Any intervalI containing a subset of them intervals
can be shrunk so that the endpoints ofI coincide with the endpoints
of some of them intervals. Hence, there areO(m2) candidate
intervals. Generalizing this argument to higher dimensions, we can
generateO(m2d) candidate rectangles inR.



(a) (b) (c)
Fig. 4. Three steps of iterative reweighted sampling: Choose a subsetSa; find a filter assignmentΦ of Sa; (a, b) double the weight of all
uncoveredS ∈ S, (c) The expansion ofΦ coversS.
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(b) No two intervals of lengthℓj
overlap by more thanℓj/2.

Fig. 5. Two main ideas for the rectangle generation step.

proportional to the number of brokers (we setk = 5|B|).
We obtain these super-subscriptions by partitioningS into k
clusters and choosing the minimum enclosing box (MEB) of
the subscriptions in each cluster. This clustering is done in
a joint network-event space, and captures geographical and
topical concentration of interests. In the second step, instead of
generatingO(k2d) rectangles, we use a hierarchical procedure
that generates fewer rectangles. The intuition is that if latency
and load balancing constraints are not too tight, there is some
flexibility in assigning subscribers to brokers and the filters
can be “loose.” The first step is relatively straightforward; see
the technical report version [15] of this paper for details.We
now describe the second step in more detail.

In the second step, for each dimensioni ∈ [1, d], we
construct a setJi of intervals on thexi-axis. We setR to be the
Cartesian product of these sets, i.e.,R = {J1×· · ·×Jd | ∀i ∈
[1, d] : Ji ∈ Ji}. It thus remains to describe the construction
of Ji. Let Ii be the set ofk intervals that are the projection of
Ξ onto thexi-axis. Let∆ be the length of the smallest interval
containingIi, and letδ be the length of the smallest interval
in Ii. For 1 ≤ j ≤ log2(∆/δ), let ℓj = 2jδ. (If ∆/δ is large,
we chooseℓj ’s more carefully.) For eachj, let Iij ⊆ Ii be the
set of intervals of length at mostℓj/2; our goal is generate a
set of intervalsJij of length at mostℓj such that every interval
of Iij is contained by one inJij , and no two intervals inJij
overlap by more thanηℓj (1/2 ≤ η < 1; we useη = 1/2).
Figure 5 illustrates the ideas.

To avoid two intervals inJij overlapping by more thanηℓj ,
let L be the set of left endpoints of intervals inIij , sorted
in increasing order. We scanL from left to right and do the
following. We take the first point, sayp, of L and remove all
points fromL that are within distance(1− η)ℓj from p. Let
J be the interval of lengthℓj with p as its left endpoint. We

shrink J to the smallest possible interval that still contains
the same subset of intervals inIij . We then addJ to Jij and
repeat the above step, untilL becomes empty, at which point
we addJij to Ji and move on to the nextj. In the worst case,
|Ji| = O(k log2 ∆/δ), but in practice we expect it to be closer
to O(k) or even smaller. Hence, the size of the filter candidate
set is O(kd), but it can be further reduced by working in
high dimension directly ifE has high dimensionality.FilterGen
shrinks each rectangleR ∈ R to the MEB of subscriptions
contained byR and returnsR to FilterAssignHelper.

B. Subscription Assignment

The second step ofSLP1 takes as input the preliminary filter
assignmentΦ produced byFilterAssign in Section IV-A, and
computes the subscriber assignmentΣ : S → B, for the entire
set of subscribers. Since the filters are already given, we are
not concerned with minimizing bandwidth here; instead, we
focus on load balance while ensuring that subscribers are only
assigned to brokers thatcover them (recall the definition of
“cover” from Section IV-A.1, which considers both nesting
and latency constraints). Also, recall from Section II thatβ
andβmax are user-defined desired and maximum load balance
factors (lbfs), resp.; our goal is to find aΣ whose lbf is no
more thanβ, or else, close toβ and no more thanβmax.

We formulate the computation ofΣ as a max-flow problem.
We construct a bipartite graphG = (V,E), whereV = S ∪
B ∪ {s, t}, E = E1 ∪ E2 ∪ E3, E1 = {(s,B) | B ∈ B},
E2 = {(S, t) | S ∈ S}, andE3 = {(Bi, Sj) | Bi coversSj}.
We set the capacity of every edge inE2 ∪ E3 to 1, and the
capacity of an edge(s,Bi) in E1 to ⌊βκi|S|⌋. Initially, we let
β = β, but it may increase over time toβmax.

We compute the maximum flow froms to t. Let f be the
value of the maximum flow. Iff = |S|, then every subscriber
in S is assigned to a broker, which can be identified by the
edge into the subscriber with flow of1. We return the resulting
subscriber assignment, which by construction has a lbf of no
more thanβ. If f < |S| andβ = βmax, we conclude that the
load balance constraint is too tight, and we stop. Iff < |S| and
β < βmax, we increase the value ofβ by a small factor, update
the capacity of the edges inE1, and recompute the maximum
flow from s to t. Depending on the maximum flow algorithm
employed, as an optimization, we can reuse the current flow
as the starting flow for the increased value ofβ.



C. Filter Adjustment

The third and last step ofSLP1 further adjusts the pre-
liminary filter assignmentΦ = {ϕ1, . . . , ϕn} made by
FilterAssign. Based on the subscriber assignmentΣ : S → B

made by the second step, this step opportunistically tightens
the filters, and enforces the filter complexity constraint (that
eachϕi consists of no more thanα rectangles). Consider each
brokerBi with preliminary filterϕi. Let Si ⊆ S be the set of
subscribers assigned toBi. We want to replaceϕi by fi, a set
of no more thanα rectangles, such that

⋃
Sj∈Si

σj ⊆
⋃

R∈fi
R

andVol(
⋃

R∈fi
R) is minimized. The problem is NP-hard [16]

in general, so we use a simple heuristic. Roughly speaking,
for each preliminary filter, we cluster its subscriptions inthe
event space intoα groups, and construct an alternative filter
consisting ofαMEBs, one for each group. See [15] for details.

D. Discussion

SLP1 involves solving an LP givenB, Sa, Sb ⊆ Sa, andR
(Section IV-A.1). The optimal LP fractional solution provides
a lower bound for the optimal bandwidth of subscription
assignment with respect toSa andR. Randomized rounding
for the yik ’s would increase the expected bandwidth ofT

and expected filter complexity of each broker by a factor of
2 ln |Sa| in the worst case, but since the size of anε-certificate
is independent of|S|, |Sa| is likely much smaller than|S|, so
the blow-up is closer to a small constant factor—as evident
from our empirical results.

With Theorem 1 in the appendix, we show that there exists
a rounding scheme forxij ’s such that the latency and nesting
constraints are strictly enforced, and the expected load balance
of a broker can be increased by a factor of at most2 ln |Sa|
with respect to the random subsetSb. If |Sb| is large enough,
the expected load is balanced with the entire set of subscribers
by using existing theoretical results onǫ-approximation. Since
our max-flow based algorithm optimizes load balancing, the
resulting subscriber assignment is better than the one obtained
from the rounding scheme in terms of load balancing.

The optimal filter assignment forS is also a filter assignment
for Sa ⊆ S; therefore, the LP fractional solution, optimal with
respect toSa, must be a lower bound for the optimal solution
with respect toS. However, decreasing the cardinality ofR
can increase the fractional value. Note that the two steps in
candidate filter generation are orthogonal to one another. We
can prove that given the set of super-subscriptions, the pruning
of filters in the interval generalization step only degradesthe
final fractional solution by a constant factor because for any
rectangleR excluded from the candidate filter setR, there
exists a filterR′ ∈ R such thatR ⊆ R′ and Vol(R) ≈
Vol(R′). More precisely, if the first step is skipped, i.e. every
subscription is a super-subscription, the fractional solution
matches the lower bound of the optimal solution up to a small
constant factor by Lemma 4. However, we cannot bound the
blow-up due to the super-subscription clustering step; it is a
necessary trade-off between performance and effectiveness.

V. M ULTI -LEVEL SA

We now describe an algorithm for SA when the broker tree
T has multiple levels of brokers. One possible approach is
to first run the one-level algorithmSLP1 (Section IV) over
all leaf brokers, and then compute the filters at the interior
nodes ofT in a bottom-up manner. This approach has two
drawbacks. First, sibling brokers inT may be assigned very
different subscriptions, forcing a large filter at their parent
which consumes a lot of bandwidth. Second, solvingSLP1 on
a large set of brokers is computationally expensive. In practice,
broker trees often follow the topology of the underlying
network, so a top-down hierarchical approach will be effective.

Our algorithm works by recursively applying the one-level
algorithm SLP1 to subtrees inT in a top-down manner. At
each non-leaf brokerB of T, we invokeSLP1 to distribute
the subscribers amongB’s children, deciding in which subtree
of B each subscriber will be assigned. We then recursively
process each child with the set of subscriptions assigned to
the corresponding subtree.

To invokeSLP1 over a set of non-leaf sibling brokers, we
still need to address the issues of determining appropriate
latency and load balance constraints for assigning a subscriber
to these brokers—recall from Section II that the actual latency
to a subscriber depends on its leaf broker assignment, which
we have not made yet because of top-down processing; the
load balance constraints have only been defined for leaf
brokers. See [15] for how to address these two issues.

VI. EVALUATION

Other Algorithms Tested. For comparison withGr, Gr⋆,
SLP1, andSLP, we also consider other algorithms. The first
one is a variant ofGr that ignores latency. (Note that it is
less sensible to ignore load balance, because there would bea
strong incentive to assign every subscriber to the same broker.)

• Online Greedy without Latency Consideration(Gr¬l).
This algorithm works exactly likeGr, except that it drops
the latency constraint in defining candidate broker sets. The
answer produced byGr¬l is useful in understanding how
latency constraints affect attainable bandwidth.

We additionally consider other algorithms that ignore band-
width and instead focus on some other performance metrics.
As we will see, likeGr¬l, these algorithms do poorly on the
metrics they ignore, but they help illustrate the importance of
considering multiple metrics jointly in optimization.

• Closest Broker without Load Balance(Closest¬b). This
algorithm resembles the one in [1]. It assigns each sub-
scriber to its closest leaf broker in the network space
(hence minimizing the last-hop latency). Ties are broken
arbitrarily.

• Closest Broker(Closest). Like Closest¬b, this algorithm
assigns each subscriber to its closest leaf broker. However,
once a broker has already been assigned the maximum
number of subscribers allowed by the user-specified maxi-
mum lbf βmax, Closest drops it from further consideration.



• Best Load-Balanced Assignment(Balance). This algo-
rithm finds the assignment with the best possible lbf
(possibly less than the user-specified desired lbfβ) by
solving a max-flow problem. The graph construction is a
variant of the one in Section IV-B.

Workloads. As discussed in Section I, it is important to
base evaluation on realistic workloads, but they are difficult to
find. Our earlier work [6] addressed this issue by developing
a workload generator based on publicly available statistics on
Google Groups. Extrapolating from these statistics, the genera-
tor produces a baseline workload consistent with them, and can
generate additional workloads that deviate in meaningful ways
from the baseline. We use multiple workloads produced by
this generator (collectively referred to asworkload set #1) for
evaluation. The network locations are mapped to points inN =
R

5, and the subscriptions are rectangles inE = R
2. We vary

two factors—IS, interest skewness in terms of popularity, and
BI, number of broad interests (i.e., large rectangles)—between
the settings of L(ow) and H(igh). The baseline workload
from Google Groups resembles (IS:H, BI:L). The distribution
of subscribers across Asia, North America, and Europe is
4 : 1 : 4. The distribution of brokers across the network space
is set to be roughly the same as that of the subscribers.

Workload set #2, designed to reproduce those used for
evaluation in [17], [18], [5], is based on observations of
the RSS feed popularity. A total of50 different interests
are generated and their popularity follows a Zipf distribution
with exponent0.5. Each interest is mapped to a random unit
square inE. Given an interest, subscriber locations are drawn
uniformly at random from 10 locations inN. In this workload
set, the subscriber interests are essentially topic-based, and no
notion of “proximity” is captured in either the event space or
the network space.

Workload set #3is designed to mimic those used in [19],
[20], [21]. We partition the event space into100 grid cells.
The center of a subscription is mapped to the center of one of
the cells. To create hot spots inE, we rank the cells in random
order; the probability of picking a cell as a subscription center
follows a Zipf distribution with exponent0.5. There is also
a set of predefined subscription widths. For each dimension,
the width of a subscription is chosen from this set according
to a Zipf distribution with exponent0.5. Each subscriber
is randomly located at one of the network locations inN;
therefore, subscriber interests and locations are independent.

More details on how to generate these workload sets are
available in [15]. We focus on results for workload set #1 as
it is more realistic; additional results are in [15].

Problem Settings. Unless otherwise specified, we use the
following settings for the SA problem. We set filter complexity
α = 3. Latency constraints are specified using amaximum
delay of 0.3; the delay experienced by a subscriberS under
a subscriber assignmentΣ is defined to beδ/∆− 1, whereδ
is the latency of the path inT ∪ Σ from the publisher toS,
and∆ is latency of the shortest path from the publisher toS
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Fig. 6. Overall comparison (one-level network, workload set #1).

throughT. For the load balance constraints, all leaf brokers
have equal capacity fractions. For workload set #1, the desired
and maximum load balance factors,β andβmax, are1.5 and
1.8, respectively. For workload set #2, since the subscribers
of an interest are restricted to only a few network locations,
subscriber distribution is skewed inN due to interest skewness.
Therefore, we setβ andβmax to more relaxed values of2.3
and 2.5, respectively. For workload set #3, since subscriber
locations are random, we tightenβ to 1.3 andβmax to 1.5.

We compare the two greedy algorithms in Section III and
the algorithms described earlier in this section together with
SLP1 (for one-level broker networks) orSLP (for multi-level
broker networks). The quality of a solution is measured in
terms of total bandwidth, subscriber delays, and broker loads
(i.e., number of subscribers assigned to each broker). For
non-deterministic algorithms, we do five runs and report the
average (when applicable); we have found deviation in results
to be insignificant.

Solution Quality for a One-Level Broker Network. In
the following, we have100,000 subscribers to assign to100
brokers attached directly to the publisher.

Overall Comparison: Figure 6. To get a quick overview, we
plot the result quality of each algorithm on workload set #1 as
a triangle whose vertices correspond to total bandwidth, root
mean square (RMS) of delay across subscribers, and standard
deviation (STDEV) of broker loads. The numbers reported
are averaged over four workloads: (IS:L, BI:L), (IS:H, BI:L),
(IS:L, BI:H), and (IS:H, BI:H).

We see thatSLP1 andGr⋆ do well in minimizing bandwidth
while bounding delay and load balance.Gr is worse: not only it
incurs higher bandwidth, but it also produces very unbalanced
loads (whileSLP1 and Gr⋆ stay right within the maximum



lbf). In fact, for all four workloads,Gr fails to find a feasible
solution that satisfies the load balance constraints; nonetheless,
we report the best-effort solutions found byGr. We also tried
variants ofGr: whenever we cannot assign a subscriberSj

because all its candidate brokers are fully loaded, we randomly
remove some subscribers from these brokers to make room
for Sj , and either reassign the removed subscribers next, or
append them to the list of subscribers to be processed later.
These variants still failed to find feasible solutions, evenwhen
given longer time to run thanSLP1.

On the bottom, we see algorithms that ignore one perfor-
mance criterion or another do poorly. By failing to consider
subscriptions in the event space,Closest¬b, Closest, and
Balance incur huge bandwidth. By ignoring latency constraints
in the network space,Gr¬l produces unacceptable delays.
Closest¬b does okay with load balance in this case only
because the broker and subscriber distributions are similar;
in generalClosest¬b’s load imbalance can be arbitrarily bad.

One question that we set out to answer with these exper-
iments is whether, in practice, we could use the solution to
a more tractable optimization problem that ignores some con-
straints as a (lower-bound) yardstick for gauging the quality of
the solution to the full optimization problem. Here it is clear
that Gr¬l is not a good yardstick—compared with the other
algorithms, its bandwidth is just too low and too unrealistic to
serve as a meaningful yardstick.

But then, how could we conclude that a solution is “good
enough” with respect to the optimal? The solution ofSLP1,
though not guaranteed to be optimal, serves as a reasonable
indicator because ofSLP1’s theoretical properties. Next, we
will see how a by-product of runningSLP1, namely the LP
fractional solution (Section IV-D), can further help.

Bandwidth: Figure 7(a), Tables I and II. In Figure 7(a),
we take a closer look at total bandwidth consumption across
workload set #1. The relative ordering of the algorithms is
fairly consistent.SLP1 andGr⋆ are good and comparable.Gr
is consistently worse (not to mention its solutions also violate
load balance constraints). Algorithms that ignore the event
space are the worst. Again,Gr¬l (barely visible in the figure)
is just too good to be true or useful to the comparison.

Table I additionally shows the total bandwidth of the LP
fractional solution obtained by runningSLP1. Recall from
Section IV-D that this solution provides a lower bound for the
attainable bandwidth (modulo the choice of candidate filters)
and the optimal bandwidth up to a small constant factor (if
subscriptions are not first clustered into super-subscriptions).
We see from the table that such solutions give much more
meaningful lower bounds thanGr¬l. The fact thatSLP1 and
Gr⋆ perform within small factors (between1.3 and2.7) from
the fractional solution is a good indication that they perform
very well with respect to the optimal.

Table II further shows the comparison for workload sets #2
and #3. Here, the bandwidths of the LP fractional solutions
indicate thatGr⋆ performs well in both data sets. For workload
set #2, the fact that the bandwidth ofGr⋆ is smaller than the

TABLE I
BANDWIDTH COMPARISON (WORKLOAD SET #1)

Workload Fractional solution SLP1 Gr⋆ Gr

(IS:L, BI:L) 3.09E9 7.12E9 6.53E9 9.50E9
(IS:H, BI:L) 1.2E9 1.86E9 1.53E9 2.09E9
(IS:L, BI:H) 3.81E9 8.48E9 7.79E9 1.05E10
(IS:H, BI:H) 1.29E9 2.13E9 2.39E9 2.78E9

TABLE II
BANDWIDTH COMPARISON (OTHER WORKLOAD SETS)

Workload set Fractional solution SLP1 Gr⋆ Gr¬l

#2 1.01E7 1.37E7 8.5E6 220
#3 2.48E10 5.4E10 5.3E10 5.09E10

LP fractional solution automatically implies that the bandwidth
achieved byGr⋆ matches the lower bound (within a small
constant factor).

Delays: Figure 7(b). Here we show scatter plots of delay
versus shortest path latency for selected algorithms for (IS:H,
BI:H); the results are similar for other workloads in workload
set #1 and for other workload sets. BothSLP1 andGr⋆ are able
to bound delay at0.3 as required.Closest¬b is expected to do
well on delay, because it focuses exclusively on the network
space. However, sinceGr¬l ignores the network space, it has
trouble satisfying the latency constraints; subscribers near the
publisher are especially vulnerable as they may be assignedto
faraway brokers that blow up delays significantly.

Broker Loads: Figures 7(c) and 7(d).Figure 7(c) shows the
boxplot of broker loads for each algorithm for (IS:H, BI:H);
the results are similar for other workloads in workload set
#1. The two dashed horizontal lines show the maximum and
desired load bounds corresponding toβmax and β, respec-
tively. As expected,Balance is the best;Closest also does well
because the broker distributions roughly follow the subscriber
distributions in our workloads;Closest¬b is similar toClosest
but some brokers may still be overloaded becauseClosest¬b

does not enforce load balance constraints. Keep in mind,
however, that these algorithms achieve good load balance at
the expense of huge bandwidth (Figure 7(a)). Other algorithms
exhibit wider range of loads. As mentioned earlier,Gr is unable
to satisfy the load balance constraints, butSLP1, Gr⋆, Gr¬l do,
with SLP1 achieving a lbf close to the desired setting.

To have a closer look at the load distributions, we plot the
cumulative distribution function (CDF) for selected algorithms
in Figure 7(d). Gr, despite its best attempt at enforcing
constraints, leaves more than10% of the brokers overloaded.

The results are also similar for the other two workload sets.
The maximum load ofGr exceedsβmax by 39% and58% for
workload sets #2 and #3, respectively.

Solution Quality for a Multi-Level Broker Network. In
the following, we test workload set #1 and have100,000
subscribers to assign to a multi-level network of200 brokers,
where each internal broker has a maximum out-degree of
15. We also adjust the constraints to see how well different
algorithms cope with them. In thetight latencysetting, we set
the maximum delay to0.2; to compensate, we set the desired



(a) Bandwidth

0

5

10

15

20

0 100 200 300

D
e

la
y

Shortest path distance

SLP1

Gr*

Gr¬l

Closest¬b

(b) Delay distribution (c) Broker load distribution (d) Broker load CDF
Fig. 7. Detailed comparison (one-level network, workload set #1).

0
1

2
3

x 10
10

0
0.5

1
1.5

0

500

1000

1500

2000

2500

 

Total bandwidthRMS delay
 

S
T

D
E

V
 o

f b
ro

ke
r 

lo
ad

SLP
Gr
Gr*

0

1

2

3
x 10

10

0
0.5

1
1.5

0

500

1000

1500

2000

2500

 

Total bandwidthRMS delay
 

S
T

D
E

V
 o

f b
ro

ke
r 

lo
ad

Gr−l
Closest
Closest−b
Balance

(a) tight

0
1

2
3

x 10
10

0
0.5

1
1.5

0

500

1000

1500

2000

2500

 

Total bandwidthRMS delay
 

S
T

D
E

V
 o

f b
ro

ke
r 

lo
ad

SLP
Gr
Gr*

0
1

2
3

x 10
10

0
0.5

1
1.5

0

500

1000

1500

2000

2500

 

Total bandwidthRMS delay
 

S
T

D
E

V
 o

f b
ro

ke
r 

lo
ad

Gr−l
Closest
Closest−b
Balance
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Fig. 8. Overall (multi-level network, workload set #1);tight and
looserefer to the tight and loose latency settings, resp.

and maximum lbfs to7 and 8 (the minimum possible lbf is
around6). In the loose latencysetting, we set the maximum
delay to1, and the desired and maximum lbfs to1.3 and1.5.

Overall Comparison: Figures 8(a) and 8(b).Similar to the
results for a one-level network, algorithms that ignore theevent
space (Closest¬b, Closest, andBalance) incur high bandwidth,
while the algorithm that ignores the network space (Gr¬l) pro-
duces long delays. Again,Gr¬l’s bandwidth is too unrealistic to
serve as a meaningful yardstick for other solutions. Therefore,
we omit these algorithms in subsequent comparisons.

Under the loose latency setting,Gr andGr⋆ are comparable
to SLP, andGr⋆ actually achieves slightly lower bandwidth
than SLP. Under the tight latency setting, however, bothGr
andGr⋆ fail to produce a feasible solution that satisfies the load
balance constraints (like what happened toGr for the one-level
network). Since the solution quality ofGr⋆ dominates that of
Gr, we also omitGr in subsequent comparisons.

Bandwidth: Figures 9(a). Interestingly, for all but one of the
eight workloads,SLP underperformsGr⋆. One explanation is
that subscribers have too few choices of brokers under the tight
latency setting, and too many choices under the loose setting;
in either case,SLP has little advantage overGr⋆. However,
note that the comparison under the tight latency setting is
misleading, becauseGr⋆ is unable to satisfy the load balance
constraints, whileSLP does. Under the loose latency setting,
two algorithms actually have more similar performance.
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Broker Loads: Figures 9(b).These figures show the results on
(IS:L, BI:H). Regardless of the latency setting,SLP satisfies
all constraints. On the other hand,Gr⋆, despite its best effort,
cannot enforce all load balance constraints under the tight
latency setting. A closer look at the broker load distribution
(not shown here) would reveal that more than10% of the
brokers are overloaded.

Effect of Filter Complexity. Figure 10 shows the effect of
the filter complexity (α) on the total bandwidth of solutions
by SLP, Gr, andGr⋆. The workload is (IS:H, BI:H), with a
one-level network. As discussed in Section II, a largerα may
reduce bandwidth, because multiple rectangles can summarize
a set of subscriptions more precisely than a single rectangle.
This effect is clear and similar for all three algorithms. At
the lowestα settings of1 and 2, SLP1 is more vulnerable
than Gr and Gr⋆: a filter may consist of multiple faraway
rectangles after rounding of the fractional solution; covering
them with just one or two MEB may increase the filter volume
dramatically. Overall,α = 3 is reasonable for all algorithms; a
largerα increases storage and processing overhead at a broker
and its parent, and has diminishing effect on bandwidth.

Running Time of SLP. We measure the wall-clock time
of running SLP on a Dell OptiPlex 960 desktop with Intel
Core2 Duo CPU E8500 at3.16GHz, 6144KB of cache, and
8GB of memory. The LP solver is CPLEX Version 10. A
run with one million subscribers and100 brokers in a single-
level network takes about23 hours. A run with one million
subscribers and200 brokers in a multi-level network takes
about4 hours (faster because each call toSLP1 here involves
far fewer than100 brokers). Figure 11 shows how the number
of subscribers impacts the running time ofSLP.

In sum, for realistic problem sizes,SLP has manageable run-
ning time on mid-range hardware. WhileSLP is by no means
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a fast algorithm, its solution quality makes it well worthwhile,
especially as a yardstick to gauge other algorithms.

Other Results. We have experimented with other scenarios
by varying constraints (e.g., bounding last-hop latency instead
of path latency), workload characteristics (e.g., broker distribu-
tion in the network space), and choices of parameters forSLP

(size of |Sb| (Section IV-A.2), number of super-subscriptions
in candidate filter generation (Section IV-A.3), and threshold
γ for the multi-level algorithm (Section V). These experiments
reaffirm the relative robustness ofSLP across constraints and
workloads, and verify our settings of parameters. Because of
limited space, see [15] for the results of these experiments.

Discussion. One take-way point from these experiments is
that Gr⋆ works well on many (though not all) workloads,
including fairly realistic ones generated from statisticson
Google Groups. What is more important, however, is what
allows us to draw this conclusion. Solutions obtained by
algorithms that ignore any performance criterion are not
helpful—not only do they tend to fare terribly on criteria
they ignore, but they also cannot offer meaningful bounds on
what can be realistically achieved. On the other hand, our LP-
based approach is a better yardstick for evaluating different
algorithms. While we cannot guarantee the optimality ofSLP1,
we have more assurance of its solution quality (Section IV-D)
across problem instances. Furthermore, the fractional solution
it produces gives us another indicator of optimality that isfar
more useful than, say, whatGr¬l offers.

One might wonder ifGr⋆ works well in general. It does not.
We have already seen that it has trouble with load balance con-
straints under the tight latency setting. Furthermore, in [15], we
show that there are several instances for whichGr⋆ performs
orders of magnitude worse thanSLP. These examples further
illustrate the importance of developing better yardsticksfor
evaluating algorithms for SA.

VII. R ELATED WORK

Dissemination network design for publish/subscribe has
received much attention in the past few years. As discussed
in Section I, some previous work considers either subscription
similarity in the event space (e.g., [2]) or subscriber location
in the network space [1] while ignoring the other aspect.
Other performance objectives and constraints have also be
considered in subscriber assignment. Shah et al. [22] max-
imize data fidelity. Tariq et al. [23] maximize the number

of subscribers whose latency constraints are satisfied without
violating bandwidth constraints.

Another line of research focuses on self-organizing, dis-
tributed algorithms that dynamically reconfigure the network
topology to optimize specific measures. Baldoni et al. [24]
minimize the number of hops and let subscribers be spread
uniformly among brokers. Jaeger et al. [25] minimize total
processing and communication costs (excluding last-hop la-
tencies between brokers and subscribers). The distribution of
subscribers to brokers is chosen probabilistically according
to a random load value. Papaemmanouil et al. [5] present
a general optimization framework that iteratively improves
performance, starting by randomly attaching subscribers to a
node. Understanding the robustness and global optimality of
such algorithms has been challenging. We complement this
line of research by providing a yardstick for evaluation that is
computationally feasible over more realistic problem sizes.

Distributed stream processing is also related to our work.
Stream processing systems process and aggregate data over a
network of machines, and one key issue is how to optimally
place query operators onto the set of machines (see [26]
for overview and [27], [18] for more recent development).
However, the number of queries involved in the operator
placement problem is orders of magnitude smaller than the
number of subscribers in the subscriber assignment problem.

There is a vast body of literature on network design in
general. Problems that resemble ours to various extent include,
for example, the minimum steiner tree problem, the weighted
steiner tree packing problem, and content distribution network
design. Additional discussion can be found in [15].

VIII. C ONCLUSION AND FUTURE WORK

In this paper we have presentedSLP, a LP-based algorithm
for SA, the subscriber assignment problem for wide-area
content-based publish/subscribe.SLP considers the subscriber
distribution in both event and network spaces to minimize
bandwidth while satisfying latency and load balance con-
straints. To ensure its scalability to realistic problem sizes,
SLP employs a suite of techniques, including LP relaxation,
randomized rounding, coreset, sampling, and max-flow, to
carefully reduce its complexity.

As a solution to the offline SA problem,SLP can be used for
initial subscriber assignment and periodical re-optimization.
More importantly, because of its better theoretical properties
and robustness to workload variations,SLP serves as a rea-
sonable yardstick for evaluating simpler heuristic algorithms
across realistic workloads in both online and offline settings.
Using this yardstick, we have shown that a simple and efficient
greedy algorithm,Gr⋆, works well for a number of workloads.
Compared with previous work, we have pushed the sophis-
tication and scale of evaluation workloads to new heights.
While future work on improving the theoretical guarantees
of such yardsticks is still needed, we hope researchers will
find SLP and/or its ideas useful in evaluating algorithms for
SA and similar problems, where the optimal solutions remain
computationally elusive.



There are two immediate directions for future work. First,
a principled approach is still much needed for the dynamic
version of the subscriber assignment problem, where subscrip-
tions come and go. Second, it would be good to drop the
assumption that a broker tree is given in advance, and jointly
optimize subscriber assignment, broker placement, as wellas
the dissemination network topology.
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APPENDIX

Because of space constraints, see [15] for omitted proofs.
Lemma 1 (Size of coreset for filter assignment):There ex-

ists anǫ-certificateQ ⊆ S of sizeO((n ln(∆/ǫ))2dn), where
∆ is proportional to the ratio of the volume ofMEB(S) to
the volume of the smallest subscription.

Lemma 2 (Number of iterations):If no certificate is found
after 4g ln(|S|/g) iterations, the size of a certificate must be
greater thang.

Lemma 3 (Probability of valid round):Let Q be a random
sample of sizecg ln g, andΦ be the set of filters assigned to
B to coverQ. Let S′ be a set of subscriptions not covered by
Φ. The probability thatW (S′) > ǫW (S) is at most 1/2 by
choosing a sufficently large constantc.

Lemma 4 (Goodness of candidate filters):Let R∗ be the
set ofO(k2d) rectangles, where each rectangle is the minimum
enclosing box of a subset of thek subscriptions. For each
rectangleR ∈ R∗ \ R, there exists a rectangleR′ ∈ R, such
thatR ⊂ R′ andVol(R′) ≤ 4d Vol(R).

Theorem 1 (Solution quality ofSLP1): With probability at
least1/2, the algorithm, without the optional step of merging
subscriptions into super-subscriptions, returns a subscriber
assignment with the following properites: 1) The expected
bandwidth is at most2 ln |Sa|OPT , 2) latency and nesting
constraints properties are strictly enforced, and 3) the expected
filter complexity constraints are violated by a factor of at most
2 ln |Sa|.
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