
Storing Matrices on Disk: Theory and Practice Revisited

Yi Zhang
Duke University

yizhang@cs.duke.edu

Kamesh Munagala
Duke University

kamesh@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

ABSTRACT
We consider the problem of storing arrays on disk to support scal-
able data analysis involving linear algebra. We propose Linearized
Array B-tree, or LAB-tree, which supports flexible array layouts
and automatically adapts to varying sparsity across parts of an array
and over time. We reexamine the B-tree splitting strategy for han-
dling insertions and the flushing policy for batching updates, and
show that common practices may in fact be suboptimal. Through
theoretical and empirical studies, we propose alternatives with good
theoretical guarantees and/or practical performance.

1 Introduction
Arrays are one of the fundamental data types. Vectors and matri-
ces, in particular, are the most natural representation of data for
many statistical analysis and machine learning tasks. As we apply
increasingly sophisticated analysis to bigger and bigger datasets,
efficient handling of large arrays is rapidly gaining importance. In
the RIOT project [19], we are building a system to support scal-
able statistical analysis of massive data in a “transparent” fashion,
which allows users to enjoy the convenience of languages like R
and MATLAB with built-in support for vectors/matrices and linear
algebra, without rewriting code to use systems like databases that
scale better over massive data.

Scalability requires efficient handling of disk-resident arrays. Our
target applications make prevalent use of high-level, whole-array
operators such as matrix multiply, inverse, and factorization, but
low-level, element-wise reads and writes are also possible. We have
identified the following requirements for an array storage engine:

1. We must support different array access patterns (including those
that appear random). Our storage engine should allow a user
or optimizer to select from a variety of storage layouts, be-
cause many whole-array operators have access patterns that pre-
fer specific storage layouts: e.g., I/O-efficient matrix multiply
prefers row, column, or blocked layouts, while FFT prefers the
bit-reversal order. Moreover, a single array may be used in op-
erators with different access patterns; instead of converting the
storage layout for every use, sometimes it is cheaper to allow
access patterns that do not match the storage layout (see Re-
mark B.8 in appendix for a concrete example), even though it
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makes accesses more random. Finally, some operators inher-
ently contain some degree of randomness in their access pat-
terns that cannot be removed by storage layouts, e.g., LU fac-
torization with partial pivoting.

2. We must handle updates. One common update pattern is popu-
lating an array one element at a time in some order, which may
or may not be the same as the storage layout order. Handling
updates goes beyond bulk loading: some operators, such as LU
factorization, iteratively update an array and read previously up-
dated values, which means that we cannot simply log all updates
without efficiently supporting interleaving (and sometimes ran-
dom) reads to updated values.

3. We want the storage format to automatically adapt to array spar-
sity. For a sparse array, we want to avoid wasting space for el-
ements that are zero (or some other default value), which can
be done by storing array indices and values only for non-zero
elements. On the other hand, for a dense array, we want to
avoid the overhead of storing array indices by densely pack-
ing the values and inferring their indices from storage positions.
In practice, there is no obvious delineation between “sparse”
and “dense”; sparsity often varies across parts of an array and
over time, and is difficult to predict in advance. For example,
consider an application program that updates an initially empty
(all-zero) matrix one element at a time in random order accord-
ing to some ongoing computation. The matrix may turn out
dense, sparse, or partly dense (e.g., mostly upper-triangular);
regardless of its final content, our storage engine should store
the matrix in a way that provides good performance throughout
the update sequence, without user intervention.

There has been a myriad of approaches to storing arrays on disk,
but many fail to meet all requirements above. Targeting in-memory
computation, popular platforms for statistical computing such as R
and MATLAB offer separate dense and sparse storage formats, but
these formats do not adapt to varying sparsity across parts of an
array and over time, and users must choose one format in advance.
Compressed sparse column, used by MATLAB and representative
of popular sparse formats, does not support updates or random ac-
cesses for disk-resident arrays.1 Alternatively, a database system
can store an array as a table with columns representing array index
and value, but the overhead is high for dense arrays. It is generally
believed that special support for arrays is needed in database sys-
tems, either through user-defined extensions or by completely new
designs [1, 13, 6, 17]. Section 2 surveys additional related work.

A promising approach is to leverage B-tree [3]. To handle multi-
dimensional arrays, we use linearization, which maps a multi-

1For memory-resident arrays, this format is easier to search but still ineffi-
cient to update.



dimensional coordinate to a 1-d array index according to a lin-
earization function that offers control over data layout. To adapt
to varying sparsity, we apply the idea of compression, allowing
each B-tree leaf to switch dynamically between sparse and dense
formats according to the array density within the leaf. Simply out-
fitting B-tree with these features, however, falls short of offering
optimal performance for arrays, as illustrated below.

Example 1. Consider sequentially inserting elements of array into
an empty B-tree, which is a very common update pattern. Sup-
pose the array has size 12 and a B-tree leaf can hold at most
4 records. When a leaf overflows, the standard strategy is split-
in-middle, which divides the leaf into two with equal number of
records (or as closely as possible). The leaf level of the B-tree af-
ter the insertion sequence looks as follows (only record keys are
shown). About half of the space is empty, which is particularly
wasteful as no future insertions can possibly fill it. The suboptimal
space utilization also hurts access performance; e.g., array scans
become twice as costly.
0 1 2 3 4 5 6 7 8 9 10 11

While one can handle sequential insertions as a special case,
other patterns that lead to waste are difficult to detect. Are there
alternative splitting strategies that are provably resilient against
such waste, without knowing the insertion sequence in advance?

Example 2. A popular trick to speed B-tree updates is to batch
them by keeping individual record updates in a memory buffer.
When the buffer fills up, we flush the buffered updates by applying
them in key order. This approach reduces I/Os by applying multiple
updates to the same B-tree leaf with a single leaf access. A large
buffer also helps make the leaf accesses more sequential. However,
for the following update sequence, the conventional policy of flush-
ing all buffered updates when the buffer is full is not optimal. Here,
K denotes the number of updates that the buffer can hold, and each
Pi represents an update of some record on leaf Pi.

P1, . . . , P1| {z }
K/2

, P2, . . . , P2| {z }
K

, P3, . . . , P3| {z }
K

, P4, . . . , P4| {z }
K

, . . .

The flush-all policy incurs two leaf writes (of Pi and Pi+1) for ev-
ery K updates. However, the optimal policy would flush all P1 up-
dates after the (K/2)-th update; subsequently, only one leaf write
would be incurred for every K updates.

For this simple insertion sequence, flush-all is only a factor of 2
worse than the optimal. As we will see later, however, there exist
sequences for which flush-all is a factor of Ω(

√
K) worse. Are

there flushing policies that offer better competitive ratio in theory
or perform better in practice?

In this paper, we present LAB-tree (Linearized Array B-tree),
the backbone of the RIOT array storage engine, which meets all
requirements identified earlier. LAB-tree offers flexible layouts via
linearization; it inherits from B-tree efficient support for accesses
and updates; and it adapts to varying sparsity by switching between
dense and sparse storage formats automatically on a per-leaf ba-
sis. LAB-tree reexamines the leaf splitting strategies and batched
update flushing policies, for which common practices have been
rarely questioned. We present theoretical and empirical results that
contribute to the fundamental understanding of these problems.

These results challenge the common practices. For leaf split-
ting, exploiting the fact that the domain of array indices is bounded
and discrete, we devise a strategy that naturally produces trees with
“no-dead-space,” often twice as efficient as those produced by split-
in-middle. This advantage does incur a fundamental trade-off—in

the worst-case, split-in-middle has competitive ratio 2, while this
strategy has 3, which is the best possible for any “no-dead-space”
strategy. Nonetheless, on common workloads, this strategy consis-
tently and significantly outperforms split-in-middle.

For update batching, we give a flushing policy with competitive
ratio O(log3 K) in the worst case, beating flush-all’s Ω(

√
K). For

common workloads, however, flush-all actually performs better in
practice. On the other hand, starting from a simple policy with a
poor competitive ratio of Ω(K), we devise a randomized variant
that incurs fewer number of I/Os than flush-all for some workloads
(and comparable numbers for others). Our approach can be seen as
bringing to the update batching problem the same level of rigor as
in the study of caching (though results do not carry over because of
fundamental differences in their problem definitions).

Finally, we note that our techniques are easy to implement as
they do not require intrusive modifications to the conventional B-
tree. Also, many of our results generalize to other settings: the idea
of “no-dead-space” splitting makes sense for other discrete, ordered
key domains; theoretical analysis of update batching generalizes to
other block-oriented or distributed data structures.

2 Related Work
Database systems have been extended with support for arrays, and
more specifically, linear algebra. Besides storing arrays as tables
whose rows correspond to individual array elements, UDTs and
UDFs are popular implementation options (e.g., [14, 6]). In gen-
eral, these approaches can be seen as dividing an array into chunks
and storing each chunk in a database row as a unit of access. SQL
can express many linear algebra operations by calling UDFs that
operate on chunks or pairs of chunks. Database indexing is used
for accessing chunks. While this paper does not store arrays in
databases, many ideas, such as linearization, dynamic storage for-
mat, and update batching, are readily applicable by regarding a ta-
ble of chunks as a block-oriented storage structure.

There has also been work building database systems specializ-
ing in arrays (e.g., RasDaMan [1], ArrayDB [13], and SciDB [17]).
These approaches divide arrays into rectangular chunks, and often
rely on spatial indexing to retrieve chunks in high-dimensional ar-
rays. Our approach of linearization supports more layouts (e.g.,
bit-reversed) and avoids the difficulty of high-dimensional index-
ing. One reason for this different approach is that we focus less on
ad hoc region-based retrieval, but more on whole-matrix operations
with more predictable but specific access patterns. Nonetheless, it
would be interesting to see how our ideas can be applied in their
settings (e.g., linearization, alternative index reorganization and up-
date buffering methods) and vice versa (e.g., allowing replication
of boundary elements between neighboring chunks as in SciDB).

Linearization is frequently used for multi-dimensional indexing.
UB-tree [2] is the most related to our work in this regard. While
UB-tree linearizes arrays using Z-order, LAB-tree provides more
linearization options to match different application needs (with a
similar goal as RodentStore [7], but at a different level). More im-
portantly, we reexamine index reorganization and update buffering
practices, which UB-tree does not address.

There is no shortage of B-tree tricks [3, 12] aimed at improving
its efficiency. Prefix B-tree compression, for example, is a more
general form of compression than our dynamic leaf format, though
its generality also carries some overhead. There is also work on
alternative splitting strategies, such as avoid splitting by scanning
adjacent nodes for free space [9]. Most of these techniques are or-
thogonal to ours and may further improve LAB-tree in some cases.
We are not aware of any previous work on alternative splitting
strategies for bounded, discrete key domains and how they interact



with compression. Work on update batching dates back to Lohman
et al. [11]. Like us, instead of a complete reorganization, Lang et
al. [10] propose accumulating insertions in a batch, sorting them by
key, and applying them to B-tree by traversing from left to right and
backtracking along root-to-leaf paths when necessary. Our contri-
bution to the update batching problem lies in analyzing and ques-
tioning the standard practice of flushing all buffered updates.

3 Overview of LAB-Tree
Based on B-tree, LAB-tree introduces modifications and extensions
designed for arrays: linearization (this section), new leaf splitting
strategies (Section 4.1), dynamic leaf storage format (Section 4.2),
and alternative flushing policies for update batching (Section 5).

Each LAB-tree has a linearization function that specifies the
storage layout of the array. For an array of dimension d and size
N1×· · ·×Nd, a linearization function f : [0, N1)×· · ·×[0, Nd) →
[0, N1 × · · · × Nd), where all intervals are over N0, is a bijection
that maps each d-d array index to a 1-d array index. When d = 1,
f is a permutation. Conceptually, LAB-tree indexes the values of
array elements by their linearized array indices; i.e., the element of
array A with index~ı = 〈i0, . . . , id〉 is indexed as the key-value pair
(f(~ı), A[~ı]). Popular layouts, such as row-major, column-major,
blocked, Z-order, bit-reversal, can be easily and succinctly defined
as linearization functions (Remark B.1 gives concrete examples).
LAB-tree supports arbitrary user-defined linearization functions;
for convenience and efficiency, however, the frequently used ones
have support built into LAB-tree.

Each LAB-tree also has a default value (often 0) for array ele-
ments. Conceptually, LAB-tree only indexes elements whose val-
ues differ from the default. A new, “empty” array is filled with
the default value. Setting a default-valued element to non-default
value amounts to an insertion; the inverse operation amounts to a
deletion. For convenience and without loss of generality, we will
assume the default value to be 0 for the remainder of the paper.

With LAB-tree, we support three types of array accesses:
• Accessing an element by its array index ~ı, which amounts to

accessing the LAB-tree with key f(~ı).
• Accessing elements of an array via an iterator with lineariza-

tion function g, which specifies the access order and may differ
from the linearization function f used for controlling the storage
order. The i-th element in the access order has LAB-tree key
f(g−1(i)). We implement various optimizations to speed up
key calculation, including incremental computation of f ◦ g−1

and detecting the special (but common) case of f = g. Further
details can be found in Remark B.1. We also support an option
to iterate over only non-zero elements.

• Reading/writing elements in a specified hyper-rectangle in the
array index space. This type of access is common in I/O-efficient
matrix algorithms (such as multiply) that process matrices a
chunk at a time, whose size depends on the amount of avail-
able memory. Supporting such accesses as batch operations al-
lows us to avoid the overhead of iterator calls and provide more
efficient implementation for built-in linearization functions.

4 Efficiency Through Better Space Utilization
This section tackles B-trees’ efficiency problem from two angles:
splitting strategy (Section 4.1) and leaf storage format (Section 4.2).
Both aim at improving space utilization, which, as pointed out
in [15] and validated by our empirical study (Section 4.3), is largely
in line with the goal of improving time efficiency as well. We show
that by exploiting the special characteristics of arrays, LAB-trees
can achieve much better performance than conventional B-trees.

4.1 Splitting Strategy Revisited
As motivated in Section 1, the standard B-tree splitting strategy can
lead to lots of wasted space within leaves that will never get used.
In the following, we formalize the desirable properties of a splitting
strategy, propose several alternatives, and discuss their properties.

We begin with some terminology. Let κ denote the leaf capacity,
or the maximum number of records that can be stored in a leaf of
the index. Each leaf has a (key) range, which contains all keys of
records stored in this leaf. The set of all leaf ranges forms a disjoint
partitioning of the key domain. Since our index stores a 1-d array,
a leaf range is an interval [l, u), where l and u are the lower bound
(inclusive) and upper bound (exclusive) of the 0-based array indices
stored in the leaf. We define the density of a leaf `, denoted ρ(`),
as the number of records in ` divided by its capacity. Density can
be similarly defined for a set of leaves or the entire index.

When a record needs to be inserted into a leaf with range [l, u)
and already κ records (thereby causing it to overflow), a splitting
strategy chooses a splitting point x, such that the original leaf is
split into two leaves with ranges [l, x) and [x, u). A splitting strat-
egy operates in an online fashion; i.e., it processes the current inser-
tion without knowledge of future insertions. To ensure low runtime
overhead, we consider only local splitting strategies, i.e., ones that
do not read or modify leaves other than the one being inserted into.
Also, we focus on leaf splitting strategies; splitting at upper levels
of the index has little impact on the overall space and efficiency,
and we simply follow the standard B-tree strategy.

The standard B-tree leaf splitting strategy is as follows:

• Split-in-Middle. Given an overflowing leaf with κ + 1 records
with keys i0, i1, . . . , iκ, this strategy chooses the splitting point
to be x = ij , where j = b(κ + 1)/2c.

There are two desirable properties that a good splitting strategy
should have: bounded space consumption and no dead space. The
space consumption of a splitting strategy can be measured by its
competitive ratio with respect to an optimal offline algorithm. For-
mally, a splitting strategy Σ is α-competitive if, for any insertion
sequence S, the number of leaves produced by Σ at the end of S
is less than α times that produced by an optimal offline algorithm,
within an additive constant. Knowing the entire S, the optimal
offline algorithm basically stores all non-zero array elements com-
pactly, so an array with range [0, N) and n ≤ N non-zero elements
can be stored in dn/κe leaves.2

Split-in-middle is clearly 2-competitive, because it always gen-
erates leaves that are half full. It turns out that this competitive
ratio is the best we can hope for: we show that no deterministic
local splitting strategy can have a competitive ratio of less than 2
(Theorem 1 in appendix).

A second desirable property of splitting strategies is no-dead-
space. By “dead space” we mean empty slots in leaves that can
never be filled by future insertions. For example, every leaf except
the last one in Example 1 has two slots of dead space. Note that
the notion of dead space is special to unique indexes with discrete
key domains such as our setting. General B-tree leaves do not have
dead space; it is always possible to insert a record with a duplicate
key, or a record between two adjacent existing keys (up to some
limit—precision of floating-point keys or maximum length of string
keys). Formally, we define the no-dead-space property as follows.
Without loss of generality, assume that the array size is a multiple
of κ.3

2We assume standard B-tree leaf format for now; optimizations for dense
array regions are discussed later in Section 4.2.
3Otherwise, for an array with range [0, N), the last leaf can have N −
κbN/κc slots of dead space.



Definition 1 (No-Dead-Space). A splitting strategy Σ is no-dead-
space if for any index state Σ may result in, there exists a future
insertion sequence that causes all leaves to be full under Σ.

As we have seen Section 1, split-in-middle does not have this
property. But how important is no-dead-space, given that split-in-
middle already has the best possible competitive ratio? Consider
any array (or a region within an array) with density %. A strategy
that is no-dead-space would be guaranteed to have a competitive
ratio of no more than 1/% for storing the array (or the dense re-
gion). In contrast, regardless of density, split-in-middle may well
take twice the minimum space required, as illustrated in Example 1.
Thus, split-in-middle is less attractive than a no-dead-space strat-
egy when % > 1/2, which is a rather common case in our set-
ting. For example, all dense matrices fall into this case, unless they
are at the early stage of being populated in non-sequential order.
Hence, no-dead-space is an important property that focuses less on
the worst case and more on the common case of dense matrices or
dense regions in matrices.

We propose a novel strategy that is naturally no-dead-space:
• Split-Aligned. Given an overflowing leaf ` with range [l, u),

this strategy chooses the splitting point x to be a multiple of
κ that minimizes the difference between the number of records
in [l, x) and that in [x, u). If multiple values of x satisfy the
condition, the one that minimizes

˛̨
x− l+u

2

˛̨
is chosen.

In other words, split-aligned favors a split that is most balanced,
like split-in-middle, but under the condition that the splitting point
aligns with 0, κ, 2κ, . . ., i.e., endpoints of the leaf ranges had we
laid out all array elements (zero or non-zero) compactly. For exam-
ple, with κ = 5, split-aligned will choose the following split:

10 11 14 21 27

10 3512
↓

⇒ 10 11 12 14

10 20

+ 21 27

20 35

It is easy to see that, starting with a single leaf with range [0, N),
split-aligned is no-dead-space.

An obvious question is how split-aligned does on competitive
ratio. Unfortunately, there is a fundamental trade-off between no-
dead-space and bounded space consumption—we show that any
no-dead-space splitting strategy must have a competitive ratio of
at least 3 (Theorem 2 in appendix), which is worse than split-in-
middle in the worst case. We also show that split-aligned indeed
has a competitive ratio of 3; i.e., it is the best no-dead-space strat-
egy possible (Theorem 3 in appendix). This bound is non-trivial,
considering that split-aligned may generate near-empty leaves.

Besides split-in-middle and split-aligned, we also consider:
• Split-off-Dense. Given a leaf to split with range [l, u), this

strategy first considers two candidate splitting points l + κ and
u− κ, which would result in a leaf with range [l, l + κ) or one
with range [u−κ, u), respectively. Note these leaves will never
be split further. If either leaf has density greater than 0.5, we
choose the splitting point that would result in the leaf with the
higher density. Otherwise, we fall back to split-in-middle. In-
tuitively, this strategy can be seen as a tweak to split-in-middle
that first tries to split off a dense leaf that will not split again in
the future. It is not hard to see that split-off-dense is no worse
than split-in-middle in terms of competitive ratio, but split-off-
dense may sometimes do better, e.g., the sequential insertion
sequence in Example 1.

• Split-Defer-Next. This strategy tries to choose a splitting point
that delays the split of either result leaf as much as possible.
Suppose we split a leaf ` with range [l, u) and keys i0, . . . , iκ
into leaves `1 and `2 with splitting point x. Assuming that each
future insertion hits each missing key with equal probability,

we can calculate τ(x), the expected number of future insertions
into [l, u) that will cause the first split of either `1 or `2, us-
ing a formula involving l, u, and i0, . . . , iκ (see Remark B.2
in appendix for the formula and its derivation). Split-defer-next
choose the splitting point to be arg maxx τ(x). Unfortunately,
the formula for τ(x) is quite involved, and we have no closed-
form solution for this maximization problem; therefore, we re-
sort to trying every x ∈ {i1, . . . , iκ} in a brute-force fashion.

• Split-Balanced-Ratio. This strategy shares the same goal as
split-defer-next, but uses a simpler optimization objective that
is computationally easier. Given a leaf `, consider the ratio
χ(`) between the number of free storage slots in ` and the num-
ber of keys missing from (and hence can be later inserted into)
`’s range. Intuitively, a bigger χ(`) means ` is less likely to
split in the future. Split-balanced-ratio picks the splitting point
that maximizes the minimum of the two resulting leaves’ ra-
tios. Specifically, given an overflowing leaf with range [l, u)
and keys i0, i1, . . . , iκ, this strategy sets x = ik, where

k = arg maxj

“
min

“
κ−j

(ij−l)−j
, κ−(κ+1−j)

(u−ij)−(κ+1−j)

””
.

Section 4.3 compares these strategies with split-in-middle and split-
aligned using various metrics, and evaluates their performance in
practice with common workloads for matrices.

We have only discussed insertions so far. Deletions can be han-
dled using standard B-tree techniques; see Remark B.3. They are
not the focus of this paper because we find deletions to be rare in
our workloads and hence less important to overall performance.

4.2 Dynamic Leaf Storage Format
As discussed in Section 1, plain B-trees are not efficient for dense
arrays. We want LAB-tree to be efficient for dense arrays as well as
arrays whose sparsity varies over time and across different regions
inside them. To this end, LAB-tree supports two leaf storage for-
mats, sparse and dense. Different leaves can have different storage
formats, and each leaf can switch between the two formats dynam-
ically. A sparse-format leaf stores each non-zero array element in
its range as a key-value pair; zeros are not stored. Let κs denote
the sparse leaf capacity, i.e., the maximum number of records that
can be stored by a sparse-format leaf. A dense-format leaf, on the
other hand, stores all values (zero or non-zero) of array elements
from a continuous subrange of its key range. The key that starts the
subrange is also stored, but the other keys in the subrange are not,
because they can be simply inferred from the starting key and the
entry positions. Let κd denote the dense leaf capacity, i.e., the max-
imum length of the subrange, or the maximum number of records
that can be stored by a dense-format leaf. Clearly, κd > κs. For
example, if the keys are 64-bit integers and values are 64-bit dou-
bles, then κd ≈ 2κs. This two-format approach can be regarded
as a simple compression method, which we feel provides a good
trade-off between storage space and access time. More sophis-
ticated compression methods are certainly possible, but they will
likely add non-trivial decompression overhead to data accesses.

LAB-tree automatically switches between the two formats when
a leaf is written. We call the effective range of a leaf ` to be the
tightest interval containing all keys stored in `. The effective range
of ` is always contained in the range of `. If an insertion overflows
a sparse-format leaf `, and the length of `’s effective range (con-
taining all κs + 1 keys) is no greater than κd, then we switch `
to the dense format without splitting `. Conversely, if an insertion
into a dense-format leaf ` expands the length of its effective range
to greater than κd but the total number of records is still below κs,
then we switch ` to the sparse format without splitting `.

The splitting strategies in Section 4.1 need to be modified to
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Figure 1: Splitting strategies, with all leaves using the sparse format. In the first three graphs (for seq, str, and int), horizontal axes
show the percentage of elements inserted so far; each plot contains one data point every 1000 insertions, and shows one tick every
108 insertions. In the last figure, the vertical axis shows the break-down of running time into I/O and CPU, with CPU on top.4

work with the dynamic leaf format. For split-aligned, we require
the splitting point to be a multiple of κd. Other necessary modi-
fications are not difficult to devise, but care is needed to cover all
possible cases. Because of limited space, we will illustrate just one
intricacy with an example. With κs = 4 and κd = 8, consider the
following overflowing dense leaf upon the insertion of key 97:

5 6 7 8 9 10 11 12

0 256

97

Without modification, split-aligned would choose 8 (a multiple of
κd) as the splitting point. However, the result right leaf cannot store
all of 8, 9, 10, 11, 12, and 97, with either dense or sparse format.
Hence, it is necessary to further modify split-aligned to rule out
infeasible splitting points. In this case, 8 will be ruled out, and 96
will be chosen instead.

4.3 Experimental Evaluation
Splitting Strategies on Common Insertion Patterns We first
compare the performance of various splitting strategies, for now as-
suming sparse formats across all leaves. We consider the following
patterns for populating an initially empty matrix with row-major
layout: seq(uential) inserts elements in row-major order; str(ided)
inserts elements in column-major order; int(erleaved) inserts ele-
ments in row- and column-major orders in an interleaving fashion
(as in LU factorization); and ran(dom) inserts elements in random
order.

Figure 1 summarizes the results for a 20000×20000 matrix and
a 320MB buffer pool; see Remark B.4 for detailed experimental
setup. Results on other scales are similar. For this experiment, ran
is too expensive to run to completion; it takes an hour just to process
4% of the insertions. As its performance is clearly unacceptable
regardless of the choice of splitting strategy, we do not discuss ran
further here. We will, however, revisit ran in Section 5.3 because
update batching helps improve its performance.

From the first three graphs in Figure 1, we see that standard split-
in-middle uses about twice as much space as others throughout the
course of each workload. From the last graph, we see that split-
in-middle’s simpler splitting logic is not enough to make up for its
loss in I/O efficiency.4 On the other hand, split-aligned maintains
a noticeable lead ahead split-in-middle in running time, and is the
best strategy overall in both space and time efficiency.

As for other strategies, split-off-dense has curiously high run-
ning time for str despite its low number of I/Os (whose plots are
not shown here but are consistent with the first three graphs); a
closer examination of the traces reveals that split-off-dense’s ten-
dency to generate far more unbalanced leaves than others leads to

4Note that our CPU time accounting includes time spent outside system
calls on behalf of I/Os. In particular, time spent on I/Os served from our
buffer pool without hitting the disk is counted towards the CPU time instead
of the I/O time. In this figure, the CPU time’s significant proportion is in
part explained by the effectiveness of our buffer pool for these workloads.
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Figure 2: Splitting strategies, with dynamic leaf storage format.

very scattered I/Os. Split-balanced-ratio has no better space utiliza-
tion than split-aligned but carries higher CPU overhead. We omit
split-defer-next here and subsequently, because it has prohibitive
CPU overhead but offers no significant space savings.

Next, we repeat the experiments with dynamic leaf storage for-
mat, to study how this feature further affects performance. Figure 2
summarizes the results. All strategies benefit from this feature, but
split-aligned benefits more, thanks to its ability to produce leaves
that are better aligned (and hence better “prepared”) for the dense
format. For the more interesting patterns of str and int, its advan-
tage over split-in-middle widens to a factor of more than 3.5 in
terms of space, and more than 1.7 in terms of time; its advantage
over other strategies are also more pronounced than in Figure 1.
Moreover, the relative performance differences stay the same over
the course of the workloads (plots are omitted here, but exhibit the
same linear trends as the first three graphs in Figure 1). In conclu-
sion, split-aligned is a clear winner.

Finally, note that these experiments only report the running time
of populating the matrix. Split-aligned, with its highest space ef-
ficiency, becomes even more appealing if we consider the cost of
accessing the matrix subsequently. For other strategies, one could
bulk load (and compact) the array at end of the insertion sequence
to make subsequent scans more efficient, but doing so would fur-
ther add to the running time and, for a dense matrix, result in a final
tree no better than split-aligned.

Scalability Test The exeriments above are all performed on a
20000 × 20000 matrix (with 400 million elements). We also vary
the matrix size and plot the normalized total running time (obtained
by dividing the total running time by that of split-in-middle) in Fig-
ure 6. The results show a consistent relative gap between split-in-
middle and split-aligned, with or without the dynamic leaf stor-
age format. In terms of absolute running time (not plotted here),
both strategies scale linearly with the matrix size. It is clear that
split-aligned’s space efficiency advantage extends to different data
scales.

Buffer Pool Settings We next replicate the experiments in Fig-
ure 2 with different buffer pool sizes: a smaller 200MB and a big-
ger 440MB. The I/O and CPU time breakdown for the four split-
ting strategies with dynamic leaf page format is shown in Figure 3.
Split-aligned and split-off-dense are generally able to better exploit
a larger buffer pool to reduce their I/O time, although a larger-than-
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Figure 3: Impact of buffer pool size.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

#
 p

a
g
e
s
 a

llo
c
a
te

d
 (

1
0

5
)

L
A

B

B

D
A

F

intstrseq
 0

 2

 4

 6

 8

 10

 12

I/
O

 +
 C

P
U

 =
 t
o
ta

l 
ti
m

e
 (

1
0

2
s
)

L
A

B

B

D
A

F

intstrseq

Figure 4: LAB-tree, B-tree, DAF; 20000× 20000 dense matrix.
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Figure 5: LAB-tree, B-tree, DAF: 40000×40000 sparse matrix.

enough buffer pool does not bring further benefit, and in some case
may even cause extra CPU overhead (namely split-aligned with
440MB pool under seq). Split-in-middle and split-balanced-ratio
are relatively insensitive to the size of buffer pool. In this sense,
their performance is more predictable. However, even if the mem-
ory resource is scarce, split-aligned still has considerable advantage
over them.

LAB-Tree, B-Tree, and Directly Addressable File We now step
up a level and compare the performance of LAB-tree (with split-
aligned and dynamic leaf storage format), standard B-tree (with
split-in-middle and sparse leaf format), and directly addressable
file (DAF). DAF stores all array values compactly in a file, enabling
direct lookups and eliminating the need to store array indices or to
use extra indirections for indexing. File system optimizations allow
us to allocate disk pages for DAF lazily: if a page has never been
written (because it contains all zeros), it is never allocated.

First, we repeat the same experiments for a 20000× 20000 ma-
trix in Figure 2, and summarize the results in Figure 4. In terms of
space utilization, LAB-tree is on par with DAF, the best possible
in this case; B-tree is four times worse, because it lacks the dense
format and its leaves are mostly half-full. As for running time, the
break-down into CPU and I/O offers interesting insights. In terms
of CPU time, DAF is the fastest, and B-tree is the slowest; the rea-
sons are that DAF’s direct address calculation is simpler than tree
lookups, and that searching with the sparse leaf format (which B-
tree uses exclusively) is more expensive than the dense format. In
terms of I/O time, B-tree suffers from a larger number of I/Os. Sur-
prisingly, DAF has the worst I/O time for str and int, even though
it incurs a similar number of I/Os (not plotted here) as LAB-tree. A
closer look shows that DAF generates very scattered I/Os because
column-major insertions hit faraway portions of the file. In this

regard, LAB- and B-trees are better at placing and moving array
elements during the course of these workloads. This observation
offers the insight that it can be suboptimal to simply place each ele-
ment where it should be at the end of the insertion sequence, as the
intermediate states of the data structure also affect performance.

In the second set of experiments, we populate a sparse 40000×
40000 matrix with 10% randomly distributed non-zero elements.
Figure 5 summarizes the results. As expected, DAF really suffers
while B-tree shines, as there are not even locally dense regions in
this matrix. Despite being unable to exploit any density, LAB-tree
maintains comparable performance to B-tree, except that LAB-tree
has slightly higher I/O time due to slightly more random I/Os.

From the above two sets of experiments, which straddle the op-
posite ends of the dense-sparse spectrum, we see that LAB-tree is
able to automatically achieve optimal (or close to optimal) perfor-
mance without manual tuning.

Scalability Test We also scaled the experiments above with dif-
ferent matrix sizes (Figure 7). While LAB-tree and B-tree scale lin-
early under all tests, DAF’s scalability is not linear. For dense ma-
trices under non-sequential insertion pattern, DAF’s performance
degrades quickly and becomes inferior to LAB-tree as the matrix
size increases. For sparse matrices, DAF is always substantially
slower than LAB-tree and B-tree. Also note that across all scales
LAB-tree is able to maintain a factor of 2 performance advantage
over B-tree for dense matrices, while having comparable perfor-
mance for sparse matrices.

More Interesting Insertion Patterns We have only considered
three common yet fundamental insertion patterns so far, namely
seq, str and int. Note that these patterns are independent from the
storage layout or access pattern; instead, an insertion pattern is gen-
erated by a combination of two linearizations—access and storage.
For instance, str can happen if a row-major layout matrix is popu-
lated in column-major order, or vice versa. Now, we are ready to
test two other patterns obtained by inserting into matrices with a
block-based layout.

Given a matrix, we choose a block-based linearization as its lay-
out. We set the block size to be 31 × 31 (the biggest size that can
still fit in a disk page). Within every block, elements are laid out in
row-major order, and so are the blocks themselves. On top of this
fixed block storage layout, we consider two ways of populating a
matrix: row-major order and row-wise bit-reversal order. We call
the two resulting patterns row/block and bit-reversal/block, respec-
tively. Note that the second access pattern is an essential part of the
2D FFT algorithm. Combining the block storage layout with these
two access patterns, the resulting patterns hitting the linear storage
medium become more complicated and interesting.

We test the two patterns on a 20000× 20000 dense matrix. Fig-
ure 8 plots the results. Again, in terms of space utilization, LAB-
tree is the same as DAF, the best possible in both cases. B-tree is
more than three times worse due to its lack of dense format. In
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Figure 6: Splitting strategies: scalability test with sparse (top row) and dynamic (bottom row) leaf formats. X-axes show the scale of
matrix (×106 elements), while y-axes show the normalized total running time (in-middle as baseline).
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terms of both I/O time and total time, B-tree is also the worst, not
surprisingly. For row/block, LAB-tree’s I/O time is on par with
DAF’s, but it has more CPU overhead; so the result is similar to
seq in Figure 4. For bit-reversal/block, LAB-tree’s I/O time is only
60% of DAF’s, which is enough to compensate for its higher CPU
time. Overall , the results from these two new insertion pattens
agree with previous results in Figure 4 and do not change our con-

clusion.

BLAS on UFSparse Stepping up yet another level, we examine
how LAB-tree compares with B-tree and DAF for linear algebra op-
erations involving real-world matrices. For the operation, we test
matrix multiply, an essential and often performance-critical build-
ing block of more sophisticated analysis. We use an I/O-efficient
version of the block matrix multiply algorithm, which computes the



Table 1: LAB-tree, B-tree, DAF: Total running time of dgemm on UFSparse and dense matrices.
Name(ID) size #nonzeros LAB-tree (s) B-tree (s) DAF (s)
opt1 (1271) 15449× 15449 1930655 8.5 8.7 110.1
ramage02 (1274) 16830× 16830 2866352 22.0 22.1 167.1
ship 001 (1277) 34920× 34920 3896496 51.8 50.0 792.9
std1 Jac2 (1334) 21982× 21982 1248213 31.6 32.4 258.6
Ga3As3H12 (1352) 61349× 61349 5970947 131.6 132.4 4583.8
net75 (1392) 23120× 23120 1489200 13.3 16.9 364.3
human gene2 (2281) 14340× 14340 18068388 386 461 1170
TSOPF RS b2383 (2219) 38120× 38120 16171169 388 615 1088
Dense 10000× 10000 100000000 3349 5200 3292

 0
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Figure 8: LAB-tree, B-tree, DAF: more insertion patterns on
blocked 20000× 20000 dense matrix.
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Figure 9: LAB-tree, B-tree, DAF: UFSparse matrices.

result matrix one block (submatrix) at a time by reading and mul-
tiplying pairs of blocks from the input matrices and accumulating
the multiplication results in memory. For multiplying submatri-
ces in memory, we use the BLAS routine dgemm if both submatri-
ces have density greater than 0.5, or the CHOLMOD [5] routines
cholmod ssmult or cholmod sdmult otherwise.

For input, we use matrices from UFSparse, the University of
Florida Sparse Matrix Collection [8]. To test each storage method,
we prepare the input matrices with this method using a blocked lay-
out that matches the pattern of blocks accessed by the I/O-efficient
matrix multiply. We multiply each input matrix with itself, and save
the result using the same storage method as the input. Here, we dis-
cuss results for two matrices, human gene2 and TSOPF RS b2383

(Figure 9). We report the total running time, which excludes input
preparation but includes writing the result.

For human gene2 (14340× 14340 and density 8.79%), we use
1500×1500 blocks, and the total running time is 386sec for LAB-
tree, 461sec for B-tree, and 1170sec for DAF. DAF suffers from a
bloated input file. LAB- and B-trees both perform well, with LAB-
tree leading by about 16%. Their input trees are comparable in size,
because human gene2 looks uniformly sparse. The result matrix
turns out fairly dense, so the LAB-tree result is more compact.

For TSOPF RS b2383 (38120 × 38120 and density 1.11%), we
use 4000 × 4000 blocks, and the total running time is 388sec
for LAB-tree, 615sec for B-tree, and 1088sec for DAF. Unlike
human gene2, this matrix has a dense region despite its overall
sparsity. LAB-tree is able to exploit this local density to widen
its lead over B-tree to a factor of 1.6. Its lead over DAF narrows
slightly, but is still more than a factor of 2.8.

Results on more matrices are presented in Table 1. The conclu-

sion is consistent: for sparse matrices, LAB-tree performs much
better than DAF, and as well as or better than B-tree (depending on
the uniformity of sparsity); for the full matrix, LAB-tree has com-
parable performance to DAF, which is the best, while B-tree really
suffers from its space inefficiency.

5 Update Batching
We now turn to the problem of batching index updates in a mem-
ory buffer5 to consolidate writes to disk. To support index access
while updates are being buffered, we organize this buffer as an
index over the buffered updates; a record lookup would be first
checked against this in-memory index. Whenever the buffer is full,
we need to flush updates, i.e., applying them in a batch to the under-
lying disk-resident indexes. As discussed in Section 1, we question
the common practice of flushing all buffered updates whenever the
buffer is full. Section 5.1 presents alternative policies and a theo-
retical analysis of their performance. Section 5.2 discusses imple-
mentation issues and Section 5.3 presents an empirical evaluation.

5.1 Flushing Policies and Analysis
To simplify theoretical analysis, we make some assumptions. First,
we view each update to a record r as a request for the disk page
(leaf) that contains r or will contain r, and we assume that we know
the identities of all requested pages before each flushing action (see
Section 5.2 for implementation details). Second, we assume that
each flush incurs a fixed cost per update plus a fixed cost per page;
multiple updates requesting the same page incur the per-page cost
only once for the flush, reflecting the benefit of batching. Because
the sum of per-update costs in the end remain the same no matter
how we flush, we focus on minimizing the sum of per-page costs
over time. Note that this analytical model is an imperfect simpli-
fication of reality. For example, it ignores the cost of obtaining
page identities (Section 5.2) and that of splitting (which depends
on factors such as the splitting strategy). Nonetheless, it provides a
reasonable estimate of the true cost, and makes our analysis more
generalizable to other batch processing settings.

With these assumptions, we now formally define the problem.

Definition 2. There are a set of pages P on disk, and a buffer of
capacity K in memory for buffering requests. Every request refers
to a page and takes unit space in the buffer.6 A flushing policy
selects subsets of requests to flush as needed to keep the buffer size
capped at K at all times. Flushing requests for the same page
incurs unit cost. We are interested in an online flushing policy that
minimizes the total cost over a request sequence.

For brevity, by “buffered” requests we mean all requests eligible
5The buffer in this context should not be confused with the system buffer
pool. This buffer batches updates while the buffer pool caches disk pages.
6Updates to currently buffered records are simply applied to the buffer, and
are not counted as new requests. Therefore, n requests, even if they are for
the same page, would take n units of space.



for flushing, which include the incoming request. Without loss of
generality, we assume a policy only flushes when the buffer is full
(any policy can be modified to do so without affecting the cost). We
can also assume that if a policy flushes any request for P , it flushes
all buffered requests for P ; in this case, we simply say it flushes P .

As it may have occurred to the reader, this problem looks sim-
ilar to cache replacement [18]. Unfortunately, known results on
caching do not carry over. Although caching has been general-
ized to cases where pages can have varying sizes and eviction cost
can be a function of the page size, an underlying assumption re-
mains that the cache space devoted to a page P does not change as
the number of requests to P increases. On the contrary, with our
problem, n requests to the same page take n units of buffer space.
This difference turns out to be fundamental. While we can develop
flushing policies analogous to well-studied cache replacement poli-
cies, we will see that their performance differs both analytically and
experimentally; new policies specialized for flushing are needed.

We now present our flushing policies. Here we summarize our
theoretical results; see Appendix A for formal statements and proofs.
We measure the performance of a flushing policy by its competi-
tive ratio against OPT, the optimal offline policy, which knows the
entire request sequence in advance. OPT can be implemented by
an exponential-time search; the algorithmic details are irrelevant
here. (As a side note, the optimal offline cache replacement policy,
furthest-in-future [4], is not optimal for flushing; see Remark B.5.)

We show that any policy is O(K)-competitive (Lemma 2). (Had
we been dealing with caching instead, this competitive ratio would
have been the best that any deterministic policy can offer.) The
most commonly used flushing policy actually does better:
• Flush-All (ALL). This policy simply flushes the entire buffer

whenever the buffer is full. We show that ALL is Ω(
√

K)- and
O(
√

K log K)-competitive (Theorems 4 and 6).
We can generalize the lower bound above to what we call c-recent
flushing policies (Definition 3 in appendix), which do not buffer a
request for a page if there has been no request for that page during
the past cK requests. Clearly, ALL is 1-recent. We show that any
c-recent policy is Ω(

√
K/c)-competitive (Theorem 5).

The next few flushing policies have analogies in caching:
• Least-Recently-Used (LRU). This policy always flushes the

page whose most recent request is the oldest (among all pages’
most recent requests). It is analogous to the classic cache re-
placement policy of the same name. We show that LRU is
Ω(
√

K)-competitive (Corollary 1) by noting that LRU is 1-
recent. (Note that for caching, LRU is optimally competitive,
with a competitive ratio of K.)

• Smallest-Page (SP). This policy always flushes the “smallest”
page, i.e., one with the smallest number of currently buffered re-
quests. It is analogous to the LFU (least-frequently-used) cache
replacement policy. While LFU is widely used for caching, SP
does not make much sense for flushing. Intuitively, SP flushes
small pages, but flushing larger ones is more profitable as more
requests can be processed with one page write. While SP at-
tempts to preserve large pages, pages have little chance to grow
large because they may get flushed when still small.
We show that SP is Θ(K)-competitive (Lemma 2 and Theo-
rem 8). The example constructed in the proof of Theorem 8
makes the above intuition concrete. (Note that for caching,
LFU’s competitive ratio is unbounded.)

• Largest-Page (LP). This policy always flushes the “largest”
page, i.e., one with the largest number of currently buffered
requests. It is analogous to the MFU (most-frequently-used)
cache replacement policy. LP avoids SP’s problem of flushing

small pages. On the other hand, LP may flush a page prema-
turely just because it is currently the largest; however, that page
may grow even larger if it not immediately flushed.
We show that, just like SP, LP is Θ(K)-competitive (Lemma 2
and Theorem 7). The proof of Theorem 7 gives a concrete ex-
ample of the premature flushing problem.

Next, we present two new polices: the first is a randomized vari-
ant of LP, while the second is a novel policy aimed at achieving a
fundamentally better competitive ratio than the policies above.
• Largest-Page-Probabilistically (LPP). This policy randomly

flushes a page with probability proportional to the number of
requests currently buffered for this page. It can be seen as a
randomization of LP. Intuitively, LPP is designed to avoid the
problems of LP and SP: larger pages have a higher chance of
being flushed, but all pages have a chance to survive and grow
larger. Another attractive feature of LPP is its efficiency of im-
plementation, as we shall see in Section 5.2.

• Largest-Group (LG). This policy partitions buffered requests
into groups: Group i, where 0 ≤ i ≤ blog Kc, contains a
page P if the number of buffered requests for P is in the range
[2i, 2i+1). We define the size of a group to be the total number
of buffered requests for its constituent pages. When the buffer
is full, LG flushes the group with the largest size.
LG is a novel policy designed specifically for the update batch-
ing problem. Intuitively, LG’s practice of flushing a group at a
time offers better protection against an adversary than flushing
a page at a time. With blog Kc + 1 groups, the largest group
has at least K

blog Kc+1
requests, so LG always flushes a sizable

number of requests. Even if LG had chosen a wrong subset
of requests to flush, this mistake cannot be repeated until the
buffer is full again, which only happens after at least K

blog Kc+1

more requests. In contrast, an adversary can more easily penal-
ize policies that may flush a few requests.
We show that LG has a competitive ratio of O(log3 K) (Theo-
rem 9), making it the theoretically best among our policies.

5.2 Implementation
Obtaining Page Identities and Ranges All policies above ex-
cept ALL require obtaining the page identity and key range for
a buffered request. Such information is readily available by exe-
cuting a “partial” lookup for the requested key in the LAB-tree,
without visiting the leaf page containing the key. Only one par-
tial lookup is needed for requests to the same page, because once
we obtain page P ’s range, we can check whether a request refers
to P by comparing the requested key with P ’s range. Since only
non-leaf levels are visited, a generic system buffer pool (not to be
confused with the update buffer) is effective in reducing I/Os.
LP, SP, and LRU At the time of flush, these policies make one
pass over the buffered requests in key order. In the process, we find
the identity and range of each requested page P , using one partial
lookup (as opposed to one per request to P , as explained above).
Remaining details are policy-specific and are given in Remark B.6.

To further reduce page identification cost, we maintain a cache
that remembers the identity and range for up to a configurable num-
ber of pages. At the next flush, we avoid the cost of identifying such
pages. Of course, this page information cache consumes space that
could otherwise be devoted to buffering requests, which we account
for in our empirical evaluation in Section 5.3.
LPP At the first glance, LPP seems to require knowing the counts
of buffered requests for all pages. A far more efficient implemen-
tation is possible, however. We simply need to pick one buffered
request uniformly at random, find the identity and range of its page,



and flush that page (i.e., all buffered requests within its range).
Clearly, this implementation picks a page with probability propor-
tional to the number of buffered requests to this page. Remark B.7
gives additional implementation details that enable efficient ran-
dom sampling and space management.
LG At the time of flush, LG makes one pass over the buffered re-
quests in key order. For each requested page P , we find and record
the identity and range of P ; using P ’s range, we count the num-
ber of buffered requests to P ; using this count, we determine and
record the group number of P ; finally, we add the count to a run-
ning sum that maintains the size of P ’s group. After this process,
we make a second pass to flush the group with the largest size; re-
quests in this group are those with keys that fall within the ranges
of its constituent pages. Like LP, SP, and LRU, LG also maintains
a page information cache across flushes to reduce the cost of page
identification. We populate this cache in the second pass with a
subset of pages that are not flushed.
Batching Updates to Multiple Arrays An application often up-
dates multiple arrays simultaneously, so we have the problem of
allocating buffer space among multiple LAB-trees. It is possible to
have a dedicated buffer per array, and intelligently allocate space
among multiple arrays according to their shares of the workload.
This approach works well with the knowledge of future access pat-
terns, which is often difficult to obtain without user input. Thus, we
give the user the option to specify the amount of buffer to allocate
to each array (or a subset of arrays).

In the absence of user input, we take a simple default approach—
we have one single buffer for all arrays being updated by the appli-
cation, and we rely on the flushing policy to determine what to
buffer and what to flush across arrays. After all, for many appli-
cations, boundaries among different arrays are murky in the first
place, and access patterns vary across different regions in the same
array. For example, LU decomposition often stores the result of
decomposition—an upper-triangular matrix and a lower-triangular
matrix—together as one single matrix. Hence, the approach of us-
ing a unified buffer is both clean and natural in general settings.

5.3 Experimental Evaluation
We evaluate the flushing policies using seq, str, str, and ran, the
four insertion patterns from Section 4.3. Here we discuss results
for a matrix of size 4000× 4000 and a 32MB buffer pool. Updates
are buffered in a separate 3MB memory buffer, which holds about
200,000 requests for ALL but fewer for others because of their
extra space overhead. LRU, LP, SP, and LG maintain a cache that
remembers information about 8000 pages; this space is charged
against the update buffer. The scale of these experiments is smaller
than those in Section 4.3, but allows us to obtain a complete set
of results including those for the most demanding ran workloads.
Additional results for larger scales are at the end of the section.
Because of space constraints, we also omit LRU and SP; they incur
unacceptably high CPU cost like LP, which is explained later when
we discuss Figure 11.

Figure 10 shows the total number of actual I/Os incurred by each
policy (which excludes those serviced by the buffer pool without
hitting storage). This metric is unaffected by the characteristics of
the underlying storage substrate. LPP, the randomized version of
LP, turns out a winner: across all patterns, LPP is either the best
or comes close to the best. ALL is noticeably worse than LPP for
str (13% more I/Os), and much worse for ran (73% more I/Os).
LG, despite its attractive worst-case theoretical guarantee, fails to
distinguish itself for these common insertion patterns. LP has rea-
sonable I/O counts, but we will soon see its crippling disadvantage.

As storage substrates grow more diverse and sophisticated, the

relationship between I/O count and running time has become in-
creasingly dependent on the system specifics. Therefore, we com-
pare running time for two different storage substrates: ext2 on a
local hard drive, and NFS over network-attached storage (NAS).

Figure 11 summarizes the results for the local hard drive. Here
ALL really shines. A closer inspection reveals that LPP suffers
from random I/Os because of its inherent randomness; its I/O times
are higher than ALL even when its I/O counts are much lower. The
high CPU overhead destroys LP, because at the time of each flush,
it needs to scan the entire buffer and identify all pages requested.
Although the buffer pool is efficient in reducing I/O needed for
page identification (as evidenced in Figure 10), the CPU overhead
remains. Another interesting observation is the stark contrast be-
tween LP’s high CPU overhead and LG’s low CPU overhead, since
LG’s flushing procedure seems more costly than LP’s. However, by
flushing only large groups, LG flushes much less frequently than
LP, so the amortized cost of its procedure becomes much lower.

On the other hand, Figure 12, which summarizes the results for
NAS through NFS, tells a very different story.7 Here, the I/O com-
ponent of the total time is more consistent with the I/O count in
Figure 10. For this reason, and because of LPP’s low CPU over-
head, LPP’s I/O count advantage over ALL carries over, and LPP
becomes the overall winner.

We next present results for a matrix of size 20000 × 20000 and
a 160MB buffer pool. The update batching buffer has a size of
800MB (equivalent to 50,000,000 requests for ALL). Because of
its exorbitant CPU cost, LP took far more time to run than the other
policies; so we omit its results here. We saw a long running time for
LPP under ran again due to random I/Os. Therefore we terminated
the ran experiments for all policies after 37.5% matrix elements
were inserted. The I/O counts in Figure 13 are mostly consistent
with Figure 10, except that now LPP does better than ALL under
int and LG better than ALL under ran. What remains unchanged is
that LPP has a very clear advantage over the others. Figure 14 plots
the running time on the local hard drive. In terms of I/O time, ALL
is similar to LG, both much better than LPP again due to LPP’s
excessive random I/Os. All policies have much higher CPU cost
compared to Figure 11, because of the cost of maintaining order
among requests in the now much larger buffer. Overall, ALL (and
also LG) is the winner because of its sequential I/O pattern despite
its larger number of I/Os. We do not have the complete results for
the larger dataset on NFS, because of the amount of time they take
to finish; it would be interesting to see if they agree with the results
for the smaller dataset.

6 Conclusion
We have presented LAB-tree as a solution for storing arrays on
disk to support scalable analysis. It uses linearization to provide
flexible array layouts, and has a dynamic leaf format that adapts
to varying sparsity across space and time. Experiments on com-
mon workloads and real data confirm its advantage over B-tree and
directly addressable files. We have also called into question the
standard B-tree strategy for splitting overflowing leaves and the
common flush-all policy for update batching. Based on our the-
oretical analysis and empirical evaluation, we conclude with some
recommendations. 1) We believe split-aligned should replace split-
in-middle as the choice of splitting strategy for array data, because
of its good theoretical properties and practical performance. 2) For
update batching, when the difference between random and sequen-

7As an interesting side note, in some cases we see better performance on
NFS than on a local drive, because of fast network as well as better hardware
and performance enhancements in NAS.
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Figure 11: Flushing policies on local drive.
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Figure 12: Flushing policies on NFS.
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(larger matrix).

tial writes is obscured (e.g., log-structured file system) or nonex-
istent (e.g., phase-change memory), we recommend flush-largest-
page-probabilistically, with fewer I/Os and low CPU overhead. On
conventional hard drives, however, the best bet remains flush-all,
for which we also prove a reasonable competitive ratio.
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APPENDIX
A Theorems and Proofs
Theorem 1. No deterministic online local splitting strategy has a
competitive ratio less than 2.

Proof. Given any splitting strategy Σ, we construct an insertion se-
quence that results in a tree with overall density of at most 1/2,
i.e., with at least twice the number of leaves produced by the op-
timal offline algorithm. We start by inserting any κ + 1 records,
causing the first split. There are two cases. 1) If any of the two re-
sult leaves has a range with length no greater than κ, we mark both
nodes inactive; 2) otherwise, we mark the result leaf with fewer
records inactive and the other one active. After the split, we pick
any active leaf and keep inserting records into it until the next split.
The process is repeated until there is no active leaf left.

In the end, all leaves are inactive. Those generated by Case 2
all have density no greater than 1/2. Each inactive leaf generated
by Case 1 is paired with exactly one other inactive leaf. These two
leaves are resulted from splitting a leaf and have not be inserted
into since. Thus, their combined density is (arbitrarily close to)
1/2. Therefore, the overall density of the tree is at most 1/2.

Lemma 1. Every leaf produced by a no-dead-space splitting strat-
egy must have a range whose length is divisible by κ; i.e., all split-
ting points picked are multiples of κ.

Proof. For brevity, if a leaf has a range length not divisible by κ,
we call the leaf misaligned. No matter how we choose the splitting
point, if the original node is misaligned, at least one of the resulting
leaves after the split is misaligned. If a splitting strategy ever pro-
duces any misaligned leaf that is not full, we keep inserting into it,



and continue inserting into any misaligned leaf subsequently gen-
erated, until a misaligned leaf ` with range length less than κ is
produced. At this point, no future insertion sequence can eliminate
the dead space in `. Therefore, the splitting strategy does not have
the no-dead-space property.

For an array with range [0, mκ) for some integer m, all splitting
points picked by a no-dead-space splitting strategy must be multi-
ples of κ because the range of the first leaf starts with 0.

Theorem 2. Any no-dead-space splitting strategy has a competi-
tive ratio of at least 3.

Proof. Given any no-dead-space splitting strategy, we construct
an insertion sequence that results in at least three times the num-
ber of leaves produced by the optimal offline algorithm. Suppose
the tree’s key domain spans range [0, mκ). We call each interval
[iκ, (i + 1)κ) a unit interval; there are m unit intervals. Without
loss of generality, assume κ + 1 = 3k where k ∈ N.

Starting with an empty tree, insert k records each into the first (0-
th), last ((m−1)-th), and middle ((m−1

2
)-th) unit intervals, causing

the first split. By Lemma 1, records in the same unit interval will
never be separated. It is thus clear that after the first split, one leaf
contains k records and the other contains 2k. We leave the smaller
leaf intact. We call the larger leaf `. The range of ` covers m+1

2
unit intervals, the first and last of which contain k records each.
We then insert k records into the unit interval right in the middle
of `, resulting in the second split with the configuration as the first,
except that total range is halved. This process can be repeated re-
cursively until the larger leaf contains only 2 unit intervals. In the
end, all except one leaf contain k = κ+1

3
records each. Therefore,

the number of leaves is (arbitrarily close to) three times that of the
optimal offline algorithm.

Theorem 3. Split-aligned has a competitive ratio of 3.

Proof. Given any insertion sequence on an initially empty tree T ,
we construct a split tree S, which captures the history of node splits.
We maintain a bijection f between T ’s leaves (including those that
were leaves at one point but were later split and thus do not exist in
T any more) and S’s nodes by the following procedure: Initially T
contains only an empty leaf ` and S contains a single node, f(`);
whenever a leaf ` of T splits into `1 and `2, we create two new
nodes f(`1) and f(`2) in S and add them as f(`)’s left and right
children, respectively. By construction, for any node x in T , x is a
leaf in T iff f(x) is a leaf in S. To simplify notation, we will use
x to mean f(x) when there is no confusion. For any node x in S,
we denote its parent in S by p(x), and its sibling in S by s(x). In
both T and S, if x is a leaf, we denote the leaf to its left by α(x),
and the leaf to its right by β(x).

In the following, we show that all leaves of T (or S) can be put
into groups so that each group has density at least 1

3
. Therefore,

for any insertion sequence, the number of leaves generated by the
split-aligned is at most three times of that generated by the optimal
offline strategy, establishing a competitive ratio of 3. The tightness
is given by Theorem 2.

We group leaves of S as follows:

• Case A. For any leaf x in S whose sibling is also a leaf, we put
x and its sibling into one group. Such a group has at least κ + 1
records, so the density is at least 1

2
.

• Case B. For any leaf x in S whose sibling is not a leaf, if ρ(x) ≥
1
3

, we put x in one group by itself.

• Case C. For any leaf x in S whose sibling is not a leaf, if ρ(x) <
1
3

, we put x to an existing group. Specifically, if x is the left (or
right) child of its parent in S, we add it to a group to its right (or
left, respectively).

It remains to be shown that in Case C above, adding x to an existing
group never decrease the group’s density to below 1

3
.

Without loss of generality, assume x is a left child. Consider the
point when p(x) was split into x and s(x). Suppose p(x) has range
[hκ, jκ) and the splitting point was iκ (h < i < j). Let % be the
density of x right after this split; i.e., inside p(x) before the split,
interval [hκ, iκ) contained %κ records. Clearly, % ≤ ρ(x) < 1

3
.

We define the companion interval of x, denoted C(x), to be the
unit interval [iκ, (i + 1)κ), i.e., one that is adjacent to x’s range
and anchored to the splitting point. Note that C(x) must contain the
%κ-th to the ((1− %)κ− 1)-th records in p(x) before the split. Had
there existed a possible splitting point i′κ > iκ between the %κ-th
and the ((1− %)κ− 1)-th records of p(x), i′κ would have been
a better splitting point than iκ according to split-aligned, as two
resulting leaves would have been more balanced in their numbers of
records. As a unit interval, C(x) will never be split, so C(x) always
contains at least (1− 2%)κ > 1

3
κ records. Figure 15 illustrates the

definition of companion interval.
After the split, s(x) contained C(x). In S, β(x) is s(x)’s left-

most descendant, which must contain C(x) as its left-most unit
interval; thus, β(x) has more than 1

3
κ records. We have two cases.

Case 1. If s(β(x)) is not a leaf, then β(x) is in a group G just
by itself (Case B); we simply add x to G. The other nodes that can
possibly join G are β(β(x)) and α(x), but we argue that they will
not. As a left child, β(β(x)) can only join the group to its right.
If α(x) is a right child, it can only join the group to its left. If
α(x) is a left child, then x must be s(α(x))’s leftmost descendant
and thus contain C(α(x)). However, for α(x) to be added to an
existing group, we must have ρ(α(x)) < 1

3
and C(α(x)) must

contain more than 1
3
κ records, contradicting the fact that ρ(x) < 1

3
.

Therefore, the density of G, which contains only x and β(x), is at
least (%+1−2%)κ

2κ
> 1

3
.

Case 2. If s(β(x)) is a leaf, then β(x) and s(β(x)) are already
in a group G (Case A). We add x to G and claim that no other node
can join G. Let y = β(x) and z = s(y) = β(y); i.e., G contains
x, y, and z. The other nodes that can possibly join G are α(x) and
β(z). As a right child, α(x) cannot join a group to its right. Now
consider β(z). If β(z) is a left child, it will never be added to a
group to its left. If β(z) is a right child, there are two cases based
on how long the path from s(x) to y is. Note that this path consists
of left branches only.

• Case 2a. If the path length is at least 2, then β(z) is the right
child of u = p(p(z)) (Figure 16(a)). Consider the time when u
split. Obviously x was created before u, so u contained C(x).
For β(z) to be split off, β(z) had to contain no fewer records
than C(x); otherwise the split would not be the most balanced
one. Therefore, ρ(β(z)) > 1

3
, and hence β(z) will not be added

to any existing group.
• Case 2b. If the path length from s(x) to y is 1, then p(y) =

p(z) = s(x). In this case, β(z) is found by traversing up the
tree from z until the first left branch is taken, to u = p(β(z)),
and then taking the sibling right branch down (Figure 16(b)). It
is obvious that β(z) was created before x. Note that all nodes
along the path from s(β(z)) to z contain C(β(z)) as their right-
most unit interval. Consider p(x) on this path, which contained
at least three unit intervals (because of its three descendants). In
order for β(z) to be added to G, we must have ρ(β(z)) < 1

3
. In

that case, however, C(β(z)), or p(x)’s rightmost unit interval,



Range
hκ iκ (i + 1)κ jκ

x s(x)

C(x)

Figure 15: Companion interval.

· · ·

p(x)

x
s(x)

y z

u

β(z)

(a)

· · · p(x)

x
s(x)

y z

u

β(z)

(b)

Figure 16: Cases 2a and 2b in the proof of Theorem 3.

would contain more than 1
3
κ records, contradicting the fact that

x, with fewer than 1
3
κ records, was split off p(x). Therefore,

β(z) will not be added to any existing group.
To conclude Case 2, G contains x, y, and z, and has density at least
%κ+κ

3κ
> 1

3
.

Lemma 2. Any flushing policy is O(K)-competitive.

Proof. Consider any page P . OPT has to flush P at least once per
K requests for P . Any policy flushes P at most once per request
for P .

Theorem 4. ALL is Ω(
√

K)-competitive.

Proof. Let R = b
√

Kc. We construct a request sequence consist-
ing of R/2 phases, each with K requests. Each such phase has one
request for each of pages P1, P2, . . . , PR, plus K −R requests for
page P0. ALL incurs a cost of R + 1 per phase.

On the other hand, a better policy Π would keep all requests for
P1, . . . , PR until the end of the last phase, and in the meantime,
flush P0 as needed. The number of requests for P1, . . . , PR in the
buffer increases up to (R/2)R ≤ K/2, so at least K/2 space is
always available for buffering P0 requests. Therefore, Π needs to
flush P0 at most twice per phase, and flush P1, . . . , PR once at the
end of the R/2 phases. Therefore, Π’s amortized cost per phase is
at most 2 + R

R/2
= 4.

Definition 3 (c-recency). A flushing policy is c-recent if it has the
following property: If there has been no request for page P among
the past cK requests, then no request for P is currently buffered.

Theorem 5. Any c-recent flushing policy is Ω(
√

K/c)-competitive.

Proof. Consider the request sequence from the proof of Theorem 4.
We modify it as follows. For each phase, we add cK requests for
page P0 at the end of the phase. These new requests would force
any c-recent algorithm to flush P1, P2, . . . , PR, incurring a cost of
R per phase for these pages.

On the other hand, a better policy Π would keep flushing P0 as
needed, incurring at most 2c flushes of P0 per phase since at least
K/2 space is available for buffering P0 requests.

Corollary 1. LRU is Ω(
√

K)-competitive.

Proof. By Theorem 5, it suffices to show that LRU is 1-recent. For
any page P currently buffered, consider the K requests immedi-
ately following the most recent request for P . If none of these K
requests are for P , LRU must flush them later than P . P cannot
be buffered after these K requests because that would require the
buffer to hold P plus the K requests, exceeding its capacity.

Theorem 6. ALL is O(
√

K log K)-competitive.

Proof. Divide the request sequence into phases of length K. With-
out loss of generality, assume that the total number of requests is
a multiple of K. Suppose there are m pages. Let m-dimensional
vector r(t) denote the collection of requests in Phase t, where the
i-th component of the vector, denoted r

(t)
i , specifies the number of

requests for Pi.
We consider the behavior of a policy Π. Π has a buffer of size

2K and mimics OPT as follows. Let vector s(t) denote the state
of OPT’s buffer at the beginning of Phase t, where s

(t)
i specifies

the number of requests for Pi buffered by OPT at that time. Π
buffers all these requests (using at most K space) throughout Phase
t, together with all requests (using K space) received during Phase
t. At the end of Phase t, Π flushes whatever requests that OPT has
flushed during Phase t. Clearly, Π and OPT incur the same cost
over the entire request sequence.

Define a potential function over the current buffer state s as:
Φ(s) =

Pm
i=1 ln(1 + si). Let ∆ be the total potential increase

due to incoming requests over the course of executing Π on the en-
tire input sequence. Each flush of Π involves at most 2K requests
and lowers the potential by at most ln(2K + 1). The potential is 0
at the beginning and the end of the entire request sequence. There-
fore, ∆/COPT = O(log K), where COPT is the same as the total
number of flushes by Π.

Consider the change in potential in Phase t. We divide the re-
quests in this phase into two groups:

• Requests for cold pages, where a page Pi is cold in Phase t if
r
(t)
i ≥ 1 and

ln

„
1+s

(t)
i

+r
(t)
i

1+s
(t)
i

«
<

1√
K

;

i.e., the total potential increase in Phase t due to Pi requests is
less than 1/

√
K.

• Requests for hot pages, where the total potential increase in
Phase t due to requests to each hot page is at least 1/

√
K.

Let CALL
t denote the cost of ALL incurred in Phase t. Clearly,

CALL
t = qc + qh, where qc is the number of cold pages and qh is

the number of hot pages in Phase t. Note that for a cold page Pi,

1√
K

> ln

„
1+s

(t)
i

+r
(t)
i

1+s
(t)
i

«
= ln

„
1 +

r
(t)
i

1+s
(t)
i

«
>

r
(t)
i

1+s
(t)
i

.„
1 +

r
(t)
i

1+s
(t)
i

«
=

r
(t)
i

1+s
(t)
i

+r
(t)
i

,

which implies s
(t)
i > (

√
K − 1)r

(t)
i − 1. It follows that qc <

K√
K−2

, because

K ≥
X

Pi is cold

s
(t)
i > (

√
K − 1)

X
Pi is cold

r
(t)
i − qc ≥ (

√
K − 2)qc.

Let ∆t denote the total potential increase due to incoming requests
in Phase t. We have ∆t ≥ qh/

√
K. At the same time, note that



there exists at least one page Pj with r
(t)
j ≥ max(1, s

(t)
j ) (other-

wise,
Pm

i=1 r
(t)
i <

Pm
i=1 s

(t)
i = K, a contradiction), so

∆t ≥ ln

„
1+s

(t)
j

+r
(t)
j

1+s
(t)
j

«
≥ ln

 
1+s

(t)
j

+
“
1+s

(t)
j

”‹
2

1+s
(t)
j

!
≥ ln 1.5 > 0.4.

Therefore,

CALL
t

∆t
≤ qc + qh

(0.4 + qh/
√

K)/2
= 2

√
K · qc + qh

0.4
√

K + qh

< 2
√

K ·
K√
K−2

+ qh

0.4
√

K + qh

= O(
√

K).

Finally, let CALL denote the cost of ALL over the entire re-
quest sequence. CALL/∆ = (

P
t CALL

t )/(
P

t ∆t) = O(
√

K).
We have already shown ∆/COPT = O(log K), so CALL/COPT =

O(
√

K log K).

Theorem 7. LP is Ω(K)-competitive.

Proof. Consider the request sequence

P1, P2, P3, . . . , PK−2, P0, P0, P
∗
0 ,

where P ∗
0 denotes repeating P0 requests. After the K-th request

(the second P0), the buffer contains two P0 requests and one re-
quest for every other page, so LP flushes P0. Subsequently, LP
incurs one unit of cost every two new P0 requests.

A better policy Π would be to first flush P1, P2, . . . , PK−2 after
the K-th request. Subsequently, Π would buffer P0 and flush when
needed, incurring one unit of cost every K new P0 requests.

Theorem 8. SP is Ω(K)-competitive.

Proof. Let K = 3k + 1. Consider the request sequence

P1, P1, P1, P2, P2, P2, . . . , Pk, Pk, Pk, P0, P
∗
0 .

After the K-th request (the first P0), the buffer contains one P0

request and three requests for every other page, so SP flushes P0.
Subsequently, SP incurs one unit of cost for each new P0 request.

A better policy Π would be to first flush P1, P2, . . . , Pk after the
K-th request. Subsequently, Π would buffer P0 and flush when
needed, incurring one unit of cost every K new P0 requests.

Lemma 3. If OPT is given a buffer of size K/c (where c > 1)
instead of K, its cost increases by at most a factor of 2cdlog Ke.

Proof. Given the behavior of OPT using a buffer of size K, we
design a policy Π using a buffer of size K/c as follows. Suppose
OPT flushes x requests for a page P . We divide the period between
this flush and the previous flush of P into phases, according to how
many P requests have been buffered by OPT:
• The first phase is when this number is within [1, 2σ], where σ =
blog cc+ 1;

• In each subsequent phase this number is within [2i + 1, 2i+1],
for σ ≤ i ≤ dlog xe − 1.

For the first phase, Π would reserve no buffer space for P , and
simply flush every request for P immediately; there are at most
2σ ≤ 2c flushes. For the phase corresponding to [2i + 1, 2i+1],
Π would reserve b(2i + 1)/cc buffer space for P , and flush P
whenever the reserved capacity is reached or at the end of the phase;

there are at most d 2i+1−2i

b(2i+1)/cce < 2c flushes because i ≥ σ.8 Since
the number of phases is at most dlog xe ≤ dlog Ke, Π does at most
2cdlog Ke flushes for each flush of P by OPT.

Finally, it is easy to see that Π never uses more than K/c space.
During each phase, OPT spends more space on P than it does at
the beginning of the phase, while Π uses no more than 1/c of that
amount. Therefore, Π uses no more than 1/c of the space used by
OPT at any time.

Theorem 9. LG is O(log3 K)-competitive.

Proof. Divide the request sequence into R = blog Kc + 1 subse-
quences, one for each group in LG. Subsequence Si contains all
requests that are flushed by LG as part of Group i.

For each i ∈ [0, R), our first step is to compare CLG
i , the number

of flushes of Group i by LG, against COPT
i , the number of flushes

incurred by running OPT on Si with a buffer of size b K
3R
c. Divide

Si into phases separated by flushes of Group i by LG. Consider any
such phase. Let r denote the number of requests in this phase. We
have r ≥ K

R
because there are R groups and LG always flushes the

largest group. Let q denote the number of distinct pages requested
in this phase. CLG

i = q. OPT has to flush a page P at least once
in this phase if OPT is unable to buffer all requests to P in this
phase. Recall from the definition of Group i that the number of
requests per page is in the range [2i, 2i+1). With b K

3R
c space, OPT

can buffer all requests for no more than b K
3R
c/2i pages. Therefore,

COPT
i

CLG
i

≥
q − b K

3R
c/2i

q

≥ 1−
( r
3
)/2i

q
by r ≥ K

R

≥ 1−
( r
3
)/2i

r/(2i+1 − 1)
by r ≤ (2i+1 − 1)q

> 1/3.

Let CLG denote the total cost of LG, and let COPT denote the
cost of running OPT with a buffer of size K over the entire request
sequence. Next, we will show that COPT

i /COPT = O(R2), so

CLG

COPT =

PR−1
i=0 CLG

i

COPT < 3

R−1X
i=0

COPT
i

COPT =

R−1X
i=0

O(R2) = O(R3),

completing the proof. To this end, note that COPTK
i , the cost of

OPT on Si with K space, must be no more than COPT, where OPT
runs on a strictly bigger sequence. Therefore,

COPT
i

COPT <
COPT

i

COPTK
i

= O(Rdlog Ke) = O(R2)

by Lemma 3.

B Additional Remarks
Remark B.1 (Linearization Examples and Key Calculation Op-
timization; Section 3) Besides the commonly seen row-major,
column-major and block-based linearizations, a plethora of space-
filling curves can also serve as linearization functions, providing

8If i ≥ log c + 1, then 2i > 2c − 1, and we can show d 2i+1−2i

b(2i+1)/cc e <

2i+1−2i

(2i+1)/c−1
+ 1 < 2c (details omitted). If blog cc + 1 = σ ≤ i <

log c + 1, we have 2i ∈ (c, 2c), so b(2i + 1)/cc ≥ 1 and the inequality
follows.



various spatial locality properties. For example, the Z-order (Mor-
ton order) linearizes a 2D coordinate (x, y) by interleaving the bits
of the binary forms of x and y. Let 〈xn−1xn−2 . . . x0〉 denote
the binary representation of x, i.e., x =

Pn−1
i=0 2ixi, where each

xi ∈ {0, 1}. Given the 2D coordinate (x, y), its linearized coor-
dinate is fZ(x, y) = 〈xn−1yn−1 . . . x0y0〉. As another example
of linearization backed by bit operations, consider the bit-reversal
order, which reverses the bits in the binary form of a coordinate.
Row-wise bit-reversal linearization, a key component in 2D FFT,
has function fBR(x, y) = xn + 〈y0y1 . . . yn−1〉, where n is the
number of columns. Column-wise bit-reversal can be similarly de-
fined. Other extensively studied space-filling curves include Hilbert
Curve and Peano Curve, whose mathematical definitions are more
involved; interested readers can refer to standard texts [16].

Accessing elements of an array with storage linearization func-
tion f via an iterator with linearization function g is flexible but
sometimes may incur considerable computational overhead. To
speed up key calculation, we implement various optimizations. First
note that the i-th element in the access order has LAB-tree key
f(g−1(i)), which would be f.linearize(g.unlinearize(i))

if translated into our API (f and g are instances of some subclass
of Linearization class).

• For the special case f = g, the result is simply i. Our API
requires all linearization subclasses to implement an equals()

method to allow such detection.
• We also support incremental computation. Having already com-

puted f(g−1(i − 1)), we rely on another API function that
can be optionally supplied by the user for linearization objects
to speed up the calculation of f(g−1(i)). Specifically, each
linearization subclass can implement a move (base coord,

key diff) method. Semantically, it computes unlinearize

(linearize (base coord) + key diff), but it can poten-
tially use the previously computed result, base coord, and ad-
just it with key diff as determined by the linearization func-
tion. For example, for row-major linearization, move can be
implemented by simply adding key diff to the column index
of base coord, with “carrying” considered. This is computa-
tionally cheaper than a complete unlinearize call, where a
mod and a divide operation are needed. In the iterator case, we
can simply pass in g−1(i−1) (cached) as base coord and 1 as
key diff. Depending on the concrete linearization, incremen-
tal computation may or may not be faster than direct computa-
tion; in the latter case, the linearization implementor can always
omit move or declare that it should not be used.

Remark B.2 (Derivation of τ(x) for Split-Defer-Next; Section 4.1)
Let k1 = 1+arg maxj ij < x and k2 = κ+1−k1 be the numbers
of records initially in `1 and `2, respectively. Let b1 = κ− k1 and
b2 = κ− k2 be the numbers of free storage slots initially in `1 and
`2, respectively. Let d1 = x − l − k1 and d2 = u − x − k2 be
the numbers of keys initially missing from the ranges of `1 and `2,
respectively. If d1 ≤ b1 and d2 ≤ b2, τ(x) = ∞; otherwise,

τ(x) =
X

k∈[b1,b1+b2]

(k + 1) ·
`

d1
b1

´`
d2

k−b1

´`
d1+d2

k

´ · d1 − b1

d1 + d2 − k

+
X

k∈[b2,b1+b2]

(k + 1) ·
`

d2
b2

´`
d1

k−b2

´`
d1+d2

k

´ · d2 − b2

d1 + d2 − k
.

This expectation is calculated over all possible sequences of d1+d2

insertions into [l, u). We give the intuition behind the first summa-
tion; the second summation is analogous. Each summand in the
first summation corresponds to the case that `1 splits after k + 1

insertions into [l, u). For this case to happen, the first k inser-
tions must have completely filled up `1’s space, and the last in-
sertion still goes into `1’s range. The second term in the sum-
mand,

`
d1
b1

´`
d2

k−b1

´
/
`

d1+d2
k

´
, calculates the fraction of all insertion

sequences whose first k insertions fill up `1 completely. The third
term, d1−b1

d1+d2−k
, further calculates the fraction of these insertion se-

quences whose (k + 1)-th insertion goes into `1’s range.
The above formula can be further simplified as

τ(x) =

P
k∈[0,b1+b2](k+1)

“
( k

b1
)(d1+d2−k−1

d1−b1−1 )+( k
b2

)(d1+d2−k−1
d2−b2−1 )

”
(d1+d2

d1
)

.

Remark B.3 (Handling Deletions; Section 4.1) For all splitting
strategies discussed in Section 4.1, it is possible to devise a strategy
for merging LAB-tree leaves analogous to that for B-tree. On the
other hand, except for split-in-middle, there is no analogy of steal-
ing from an adjacent leaf, because it might undo the careful choice
of leaf range endpoints.

For our LAB-tree implementation, we in fact adopt a simpler ap-
proach taken by many practical B-tree implementations. Namely,
we do not merge index nodes when underflow occurs; a node is
deleted only when it is completely empty. The competitive ratio
for space consumption will be broken for workloads involving dele-
tions, but it is acceptable because deletions are rare in practice.

Remark B.4 (Experimental Setup; Sections 4.3 and 5.3) We
ran all our experiments on a Dell Optiplex 960 running Fedora 14
(kernel version 2.6.35.11), with Intel Core 2 Duo E8500 3.16GHz
CPU, 8GB of memory, and a 160GB SATA hard drive. We used the
systemtap tool to measure I/O and time costs, with systemtap’s
built-in system call probes as well as some user-space probes in
our code. We verified that instrumentation overhead was negligi-
ble. To make it easier to understand results, we used the ext2 file
system (unless otherwise noted), as it does not have journaling that
would unnecessarily complicate result interpretation; we also im-
plemented our own buffer pool manager with LRU and 8KB-sized
pages, and turned off file system caching using the O DIRECT flag.

Remark B.5 (Furthest-in-Future is not OPT; Section 5.1) Con-
sider the following request sequence (both subscripts and super-
scripts are used to differentiate pages):

P0, P0, . . . , P0| {z }
K−1

, P 1
1 , P 1

2 , . . . , P 1
K−1, P0, P

1
K−1, P

1
K−1, . . . , P

1
1 ,

P0, P0, . . . , P0| {z }
K−1

, P 2
1 , P 2

2 , . . . , P 2
K−1, P0, P

2
K−1, P

2
K−2, . . . , P

2
1 , . . .

Starting from an initially empty buffer of size K, it is easy to verify
that furthest-in-future produces the following sequence of buffer
states, for all i ≥ 1. Here, [P ]?n denotes n requests for page P .

• Immediately before the first P i
1 , we have: {[P0]

?(K−1)}.
• Upon the first P i

j , where 1 ≤ j ≤ K − 1, we flush P i
j−1 (if

any),9 and get: {[P0]
?(K−1), P i

j}.

• Upon the P0 immediately following the first P i
K−1, we flush all

P0, and get: {P i
K−1}.

• Upon the second P i
j , where K − 1 ≥ j ≥ 1, we have, without

flushing: {P i
j , P i

j+1, . . . , P
i
K−2, [P

i
K−1]

?2}.

• Upon the j-th P0 following the second P i
1 , where 1 ≤ j ≤ K−

2, we flush P i
j , and get: {[P0]

?j , P i
j+1, . . . , P

i
K−2, [P

i
K−1]

?2}.

9This behavior of flushing the incoming request differs from the traditional
furthest-in-future [4], as all cache replacement policies by definition cache
the incoming request. Flushing policies do not have this constraint, and it
makes sense to not consider the incoming request as a “future” one.



Table 2: LAB-tree: matrix multiply with layout conversion.
A’s blocking factor Multiply time (s) Conversion time (s)
500× 5000 12.5 0
1× 5000 17.9 27
5000× 1 68.7 78
500× 500 53.5 63
100× 5000 17.0 27.8

• Upon the (K − 1)-th P0 following the second P i
1 , we flush

P i
K−1, and get: {[P0]

?(K−1)}.
For each i ≥ 1, furthest-in-future repeats the above steps. incurring
2K − 2 flushes. On the other hand, the strategy that produces the
following sequence of buffer states incurs only K + bK

2
c ≤ 1.5K

flushes for each i:
• Immediately before the first P i

1 , we have: {[P0]
?(K−1)}.

• Upon the first P i
j , where 1 ≤ j ≤ bK

2
c, we flush the (one)

previously buffered page, and get: {P i
j}.

• Upon the first P i
j , where bK

2
c < j ≤ K − 1, we get, without

flushing: {P i
bK

2 c, . . . , P
i
j}.

• Upon the P0 immediately following the first P i
K−1, we flush

the new P0 request, and get: {P i
bK

2 c, . . . , P
i
K−1}.

• Upon the second P i
j , where K − 1 ≥ j > bK

2
c, we have,

without flushing: {P i
bK

2 c, . . . , P
i
j−1, [P

i
j ]?2, . . . , [P i

K−1]
?2}.

• Upon the second P i
bK

2 c, we flush the entire buffer (K − bK
2
c

pages), and get: {}.
• Upon the second P i

j , where bK
2
c > j ≥ 1, we flush the incom-

ing request, and get: {}.
• Upon the j-th P0 following the second P i

1 , where 1 ≤ j ≤
K − 1, we get, without flushing: {[P0]

?j}.

Remark B.6 (Additional Implementation Details for LP, SP,
and LRU; Section 5.2) For LP and SP, for each requested page P
we identify, we count the number of buffered requests to P using
P ’s range, and move to the first request to a different page. We
remember the page with the largest or smallest (for LP or SP, re-
spectively) number of buffered requests encountered so far. LP can
terminate the process early once we know that the largest page has
been found, e.g., when its number of requests is no less than the
number of remaining requests to be examined. SP can terminate
early as soon as it finds a page with a single request.

For LRU, we record the time when each buffered request entered
the buffer. This information requires additional space and therefore
reduces the number of requests that can be buffered. However, this
information can be compressed at the expense of accuracy. During
the pass over the buffered requests, for each requested page P we
identify, we scan the buffered requests in P ’s range and determine
the last time when P is requested. We remember the page with the

earliest such time among the pages we have encountered.

Remark B.7 (Additional Implementation Details for LPP; Sec-
tion 5.2) We store all buffered requests in an array A in memory
in no particular order. We maintain an ordered search tree T on top
of A, which allows us to find the locations of requests in A given
a request key range. To pick a page to flush, we simply pick a ran-
dom location in A (which is full at the time of the flush). With the
key of the buffered request at this location, we obtain the key range
for the page to be flushed, using a partial LAB-tree lookup. We
then use this key range to search T for all buffered requests that we
need to flush. As we flush them, we chain the reclaimed locations
in A into a linked list, whose links can be stored in A itself. This
linked list is then used for adding new requests to A efficiently.

Remark B.8 (Layout Conversion May Be Suboptimal; Section 1)
An interesting question is whether we can, before an array is used

by an operator, simply convert the array layout as needed, so that
the storage layout always matches the operator’s access pattern.
Such “on-the-fly” conversions would alleviate the need for support-
ing access patterns over mismatching storage layouts. However, it
turns out that this approach is not always optimal. We have con-
ducted an additional experiment, where a 5000 × 5000 matrix A
is multiplied with a 5000 × 1 vector x with 20MB of memory as
scratch space. The buffer pool is 32MB. Ideally, an I/O-efficient
matrix multiply algorithm would want to read A in blocks of di-
mension 500 × 5000 in turn and multiply each with the entire x
in memory. When the storage linearization of the two arrays are
exactly as the algorithm requires, the running time is 12.5 seconds.
But suppose that A starts out to be row-major. Converting A to
the ideal layout wanted by the algorithm takes 27 seconds, so the
total running time becomes 39.5 seconds if we convert as needed.
However, if simply run the algorithm on the mismatching layout,
the running time is only 17.9 seconds. We have tried other mis-
matching layouts, with results presented in Table 2. Of all layouts
tested for this case , “convert as needed” is not optimal. Of course,
there are other cases where conversion is beneficial. The choice
should really be made by cost-based optimization, which is beyond
the scope of this paper. Here, we simply observe that on-the-fly
conversion may have suboptimal performance. Also, as argued in
Section 1, for some operators, on-the-fly conversion is not always
sufficient to remove all randomness inherent in their access pat-
terns. Thus, supporting accesses to arbitrary array elements by their
indices is still a must.
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