
Processing and Notifying Range Top-k Subscriptions

Albert Yu, Pankaj K. Agarwal, Jun Yang
Duke University, USA

{syu,pankaj,junyang}@cs.duke.edu

Abstract— We consider how to support a large number of users
over a wide-area network whose interests are characterized by
range top-k continuous queries. Given an object update, we need
to notify users whose top-k results are affected. Simple solutions
include using a content-driven network to notify all users whose
interest ranges contain the update (ignoring top-k), or using a
server to compute only the affected queries and notifying them
individually. The former solution generates too much network
traffic, while the latter overwhelms the server. We present a
geometric framework for the problem that allows us to describe
the set of affected queries succinctly with messages that can
be efficiently disseminated using content-driven networks. We
give fast algorithms to reformulate each update into a set of
messages whose number is provably optimal, with or without
knowing all user interests. We also present extensions to our
solution, including an approximate algorithm that trades off
between the cost of server-side reformulation and that of user-side
post-processing, as well as efficient techniques for batch updates.

I. INTRODUCTION

Consider a range top-k query over a database of objects

(e.g. stocks). The query examines a subset of the objects

satisfying a range condition (e.g., stocks with risk rating

between medium high and high), and picks the top k objects

within this subset by some ranking criterion (e.g., stocks with

the k lowest price-to-earning ratios). Over time, when the set

of objects or their attribute values change, we wish to keep the

query result up to date, as in the standard view maintenance

and continuous query processing settings. We are interested

in how to support hundreds of thousands or even millions

of such queries simultaneously. Representing different user

interests, these queries may have different range conditions

and therefore different lists of k objects as their answers.

A challenging application setting is when a large number

of these queries, which we shall refer to as subscriptions, are

located across a wide-area network. For each event updating

the database, we must notify all subscriptions whose results

are affected. Notification messages should carry enough infor-

mation so that the affected subscriptions can update their top-k
lists accordingly. A naive approach would be to use a central

server to maintain all objects and subscriptions, compute the

list of affected subscriptions for each event, and notify each

affected subscription with the change to its top-k list. Since an

event may affect many subscriptions, this approach can easily

overload the server with processing and messaging costs at

least linear in the number of affected subscriptions.

A solution is to push some event processing and dissem-

ination work into a more “intelligent” network, but at the

cost of increasing system complexity. As demonstrated in

previous work [10, 11, 9], a content-driven network (CN)

offers a good trade-off between functionality and complexity.

CN is a class of overlay networks designed for efficient

dissemination, with a clean message interface. Many off-the-

shelf overlay networks are examples of CN, e.g., content-

based networks [8] and content-addressable networks [28].1

For the purpose of this paper, we regard CN as a black

box for efficiently delivering a message to all subscriptions

whose query parameters satisfy a selection condition carried

by the message.2 Instead of enumerating affected subscriptions

one by one, the server would compute a compact description

for the set of affected subscriptions, and then translate this

description into a series of condition-carrying messages to be

sent through CN. The number of such messages is usually

far less than the number of affected subscriptions, thereby

relieving the server bottleneck.

Range top-k subscriptions are challenging for several rea-

sons. It is straightforward for CN to handle range subscriptions

without top-k as in standard publish/subscribe: a message

simply needs to list the updated object’s attribute values, which

can be interpreted as a condition testing whether a subscription

range contains the object. However, such a message is not

enough for range top-k subscriptions because they are “state-

ful”: whether a subscription is affected depends on how the

updated object ranks against others within the subscription

range. Furthermore, if the updated object drops out of a

subscription’s top-k list, the new k-th ranked object must be

sent to the subscription. While previous work [10] addresses

the special case of k = 1 (i.e., range min/max subscriptions),

the general case we handle in this paper is considerably more

complex and has more practical applications.

A geometric framework. In this paper, we develop a

geometric framework to support range top-k subscriptions.

The geometric framework enables us to view the problem of

generating notification messages intuitively as one of tiling

a potentially complex region of affected subscriptions (in

an appropriately defined subscription space) using simple

geometric shapes. The set of tiles form a compact description

of the region. Each tile corresponds to a CN message, whose

condition selects all subscriptions covered by the tile. While

one could first compute the list of affected subscriptions and

1CN is named after these popular examples, which should not be confused
with content delivery/distribution networks [5] that serve the different purpose
of replicating popular Web objects.

2An equivalent, dual view is that CN allows subscriptions to be selection
conditions over message attributes, and CN efficiently delivers a message to
all subscriptions whose conditions are satisfied by the message.

then find the tiling, we develop algorithms (described below)

that avoid computing this potentially long list in the first place.

New algorithms. We propose new algorithms for message

generation based on the framework above. These algorithms

are scalable—they run in time dependent on the number

of messages they generate, not the number of affected sub-

scriptions (which could be substantially larger). Experiments

confirm that this property translates into substantial savings in

both server running time and network dissemination cost; fur-

thermore, the performance lead over other approaches widens

as the number of subscriptions increases.

We start with two algorithms. The first one, which we call

Paint-Dense, is subscription-oblivious; it examines only the

set of objects. This feature is attractive from both scalability

and privacy perspectives, because it alleviates the need for a

server to track a large number of subscriptions. Paint-Dense

computes the optimal tiling assuming no knowledge of the

subscriptions. The second version, Paint-Sparse, uses both

the set of objects and the set of subscriptions. Intuitively, it

produces a tiling sensitive to the subscription distribution; the

size of the tiling is 2-approximate and often much smaller than

that generated by Paint-Dense.

We also consider the case of batch updates, where a

subscription needs to be notified of the net change in its

result at the end of a batch. Simply processing this batch

one event at a time generates more traffic than necessary.

We show that by pre-processing the batch (coalescing and

reordering updates), we can guarantee that subscribers receive

the minimum number of messages needed.

Besides Paint-Dense and Paint-Sparse, we provide approx-

imate algorithms that generate even fewer messages from the

server at the expense of more “false positives”—notifications

received by a subscription but not needed. False positives

are discarded by each subscription with simple local post-

processing, so our “approximate” algorithms still guarantee

exact subscription results. Having fewer messages reduces pro-

cessing and messaging loads on the server, but false positives

bring higher last-hop traffic and extra post-processing. We

allow the trade-off to be adjusted using a parameter ε ≤ 1,
while guaranteeing that subscriptions miss no notifications and

receive no objects ranked below (1 + ε)k.

Higher dimensions and beyond. For simplicity, we present

our framework and algorithms in this paper assuming 1-d
range top-k subscriptions, but they can be generalized to sub-

scriptions whose range conditions involve multiple dimensions

and more general constraints. Because of limited space, we

briefly sketch out how extension to higher dimensions works.

As a concrete illustration, in Appendix C, we present the

detailed algorithm and experimental evaluation for 1.5-d range

top-k subscriptions.3

The subscription type we consider in this paper—orthogonal

range top-k—is a standard one in most subscription/query

3An example of a 1.5-d range top-k subscription would be “k stocks that
have the lowest price-to-earning ratio among those with market capitalization
above 50 billion US dollars and risk rating between medium high and high.”

languages. While there exist a plethora of proposals for other

language features, little is known about how best to support

this standard subscription type; our contributions fill this void.

We also note that our techniques apply to top-k subscriptions

with other types of conditions too. For example, conditions

comparing categorical attributes against concepts drawn from a

hierarchy can be mapped to range conditions with appropriate

encoding of the hierarchy. For another example, range condi-

tions subsume near-neighbor conditions under the L∞ norm,

and in low dimensions they can be effective as building blocks

for supporting near-neighbor and nearest-neighbor conditions

under other distance metrics.

This paper focuses on application settings with many geo-

graphically dispersed subscriptions to a central database (e.g.,

news aggregators and financial information services). How-

ever, our solution can be extended to other settings, ranging

from simpler ones such as non-distributed continuous query

systems with no need to deliver results over a network, to more

complex ones such as publish/subscribe systems with multiple,

distributed event publishers. We shall revisit this point when

concluding the paper, and more details can be found in the

Appendix D.

II. OVERVIEW AND OUR FRAMEWORK

A. Problem Formulation

Consider a set O of n objects. For simplicity, assume each

object has only two numeric attributes: x is used in range

conditions, while y is used for ranking objects in ascending

order of their y-values. Section IV-C discusses how to gen-

eralize the problem and our solutions to higher dimensions.

For each object i (1 ≤ i ≤ n), let xi ∈ R denote its x-value
and yi ∈ R denote its y-value. Without loss of generality, we

assume all xi’s are distinct and all yi’s are distinct.

We have a set S of m subscriptions over the network. Each

subscription Sj (1 ≤ j ≤ m) specifies an x-value range of

interest, denoted σj = [ℓj , rj] ⊆ R. For some k ≪ n, Sj

wishes to track the top k objects (along their attribute values)

in σj , i.e., those with the k smallest y-values. More precisely,

Sj must maintain, at all times, the list topk(Sj) = {(xi, yi) |
xi ∈ σj ∧ |{i′ | xi′ ∈ σj ∧ yi′ < yi}| < k}.
A (y-update) event, denoted Upd(xi, y

old
i → ynewi), changes

object i’s y-value from yoldi to ynewi . Upon receiving an event

δ, we must notify all affected subscriptions. A subscription

Sj is affected by δ iff δ changes topk(Sj); i.e., either the

membership of this list changes or the y-value of some object

in this list is updated as a result of δ. See Figure 1 for

an example. For simplicity of presentation, we focus our

discussion on y-update events.4

To notify all affected subscriptions, we follow the same

overall approach as [10]—first using a server to reformu-

late the event into a sequence of messages, then using

4We can simply treat object insertion and deletion as y-update events
Upd(xi,∞ → yi) and Upd(xi, yi → ∞), respectively. We can simulate
an update to object i’s x-value from xold

i to xnew
i by a deletion of (xold

i , yi)
followed by an insertion of (xnew

i , yi). Alternatively, it is straightforward to
extend our algorithms to handle these events directly.

CN to disseminate these messages to subscriptions, and fi-

nally having subscriptions post-process received messages

to maintain their top-k lists. More specifically, the server

maintains the set of objects O, and reformulates each event

into a sequence of constant-size CN messages of the format

Msg(ℓI , rI , ℓO, rO, xi, yi), where [ℓI , rI] ⊆ (ℓO, rO) are two

nested ranges in R, and (xi, yi) represents some object i
(with its attribute values). Each message is interpreted as a

condition over subscriptions’ ranges of interest: CN delivers

this message to subscription Sj iff [ℓI , rI] ⊆ σj ⊆ (ℓO, rO).
Each subscription Sj maintains its own top-k list Lj . Upon

receiving a message, Sj checks whether Lj currently contains

object i (the one with x-value equal to xi). If yes, Sj simply

updates the y-value of this object to yi. Otherwise, Sj updates

its list Lj to contain the top k objects in Lj ∪ {(xi, yi)}.
Our goal is to develop efficient algorithms for generating

the sequence of CN messages for each event, such that

every affected subscription will have its top-k list correctly

updated by following the protocol above. We consider several

performance measures in designing our algorithms: 1) the

number of messages generated; 2) time spent by the server in

generating them; and 3) the number of messages received by

the subscriptions.5 These measures present interesting trade-

offs and must be considered jointly. For instance, minimizing

(3) alone would not be sufficient; the naive approach of

enumerating all affected subscriptions and unicasting to them

one by one achieves this objective, but does poorly on the other

criteria. A better goal is to keep (3) minimized and optimize

other criteria as much as possible; our exact algorithms have

this goal. If the server becomes a bottleneck, we could further

reduce (1) and (2) at the expense of (3). In this case, we

would allow an unaffected subscription to be notified; our

approximate algorithms take this approach. These results are

discussed further below.

B. Overview of Our Algorithms

Exact algorithms. With an exact algorithm, the server

generates messages for each event such that only affected

subscriptions are notified, and they each receive only one

message (per y-update event). We consider two settings.

Subscription-oblivious. For the case where the server has

no knowledge of the set of subscriptions (because of either

scalability or privacy concerns), we develop an algorithm

Paint-Dense with the following properties (Theorems 1 and

2):

• The algorithm is given O, but not S.

• It generates the minimum number of messages possible

for any exact algorithm if S is dense: that is, given the set

of objects O, for any x-value range σ, there exists some

subscription interested in precisely the objects within σ.

• Its running time depends on the number of messages gener-

ated, but not on |S| or the number of affected subscriptions,

which can be much larger.

5For evaluation (Section V), especially comparison with approaches that do
not use CN, we also consider the total traffic in the underlying IP network.

Subscription-aware. We call a set of subscriptions sparse

if it is not dense. In this case, Paint-Dense may generate a

message that does not reach any subscription, wasting both

server processing and network dissemination efforts. There-

fore, we develop Paint-Sparse, with the following properties

(Theorems 4 and 5):

• The algorithm is given both O and S.

• It generates at most twice the minimum number of mes-

sages possible for any exact algorithm, and it never gener-

ates any message that reaches no subscription.

• Its running time is sublinear in |O| and |S|, and depends on

the number of messages generated instead of the number

of affected subscriptions, which can be much larger.

Extensions. We consider the batch version of the problem,

where subscriptions only need to have their top-k lists cor-

rectly updated at the end of an event sequence. We develop

Paint-Batch, which pre-processes the event sequence before

applying either algorithm above (with minor modifications)

to each event. Paint-Batch operates well with the basic CN

interface of Section II-A, and is able to guarantee that each

subscriber receives the minimum number of messages possible

(Theorem 6), which is far less than if we process all events in

the sequence in order.

We also relax the requirement that only affected subscription

may receive messages. By allowing unaffected subscriptions

to receive unnecessary messages, an approximate algorithm

further reduces the number of messages generated by the

server. We develop approximate algorithms Paint-Dense(ε)
and Paint-Sparse(ε), with parameter ε ≤ 1 controlling this

trade-off. Compared with their exact counterparts, they reduce

the number of messages by a factor of εk while guaranteeing

that unnecessarily received objects are ranked within (1± ε)k
(Theorem 7). Furthermore, such objects are automatically

ignored by subscriptions following the same protocol in Sec-

tion II-A, so all results remain accurate at all times.

Both extensions above inherit the efficiency of Paint-Dense

and Paint-Sparse, with running times dependent on the number

of messages generated rather than subscriptions affected.

We also briefly discuss how to extend our problem and

framework to higher dimensions (Section IV-C), where a sub-

scription’s range of interest becomes a d-dimensional region.

Data structures. For all our algorithms, the server maintains

a data structure indexing the set of objects O by (x, y) as points
in R

2. This index supports the following operations:

• Events that update objects in O.

• firstk(x0, y0, s): Here (x0, y0) ∈ R
2 and s ∈ {←,→}. If s

is← (resp.→), then this query finds the first k objects in O

in the southwest (resp. southeast) quadrant with (x0, y0) as
the apex as we proceed in the (−x)-direction (resp. (+x)-
direction) from (x0, y0). If the quadrant contains fewer than
k objects, all of them are reported. Only the x-values of

the objects are reported by firstk, and they are reported in

the order encountered.

• miny(σ, y0): Given an x-value range σ and a y-value y0,

1
2

4 5
7

S1 S4

9
10

S5

S2

S3

3 6
8

Fig. 1. Event space E. The shaded vertical
strip is for subscription S3. Increasing object
5’s y-value as shown would cause 5 to be
replaced by 3 in topk(S2), and by 6 in
topk(S3) and topk(S4), where k = 3.

6

7

8

9

10
(ℓO, rO)

σ∗4

σ∗3σ∗1

σ∗2

σ∗5

5

4

(ℓI , rI)

Fig. 2. Subscription space S. The same
O and S in Figure 1 are shown. The
shaded quadrant is for object 5. A CN
message is shown with dashed outline.

7

4

6

7

8

9

10

5

1

2

3
4

2

3

4
56

5

4

34

5

6

Fig. 3. Partitioning of quadrant θ5 (shaded) in S for object 5.
Rectangles are shown with level numbers. Objects that do not contribute
to this partitioning (because they have larger y-values than that of 5) are
shown as circles and with dashed-line quadrants. The influence region
of 5, IR(5), for k = 3, is shown with thick outline.

this query returns the object in O with the minimum y-
value in the 3-sided rectangle σ × (y0,∞).

We use t(n) (where n = |O|) in denoting the upper bounds

on running times of the operations above: object updates and

miny all run in O(t(n)) time, while firstk runs in O(t(n)+k)
time. If we use kd-tree for the index, then the index size is

linear and t(n) =
√
n. If we allow O(n log n) space for the

index, then we can use a data structure based on dynamic

range trees [24] to get t(n) = log2 n.
Algorithms for sparse subscriptions also require a data

structure indexing the set of subscriptions S by (ℓj , rj), the
left and right endpoints of their x-value ranges of interest, as

points in R
2. This index supports the following operations:

• Insertion and deletion of subscriptions in S.

• snap(G): Given a rectangle G ⊆ R
2, this query returns the

smallest rectangle containing all subscriptions inside R. If

there are no such subscriptions, ∅ is returned.

Using balanced binaries trees, insertion, deletion, and snap
can all be processed in O(logm) time (where m = |S|).

C. Geometric Framework

We now introduce a geometric framework essential to the

understanding of the problem. Section III will reveal, with the

help of this framework, the structure inherent in the seemingly

arbitrary subset of affected subscriptions, which allows us to

conveniently view the task of generating CN message as one

of tiling a complex region using only rectangles.

Let E = R
2 denote the event space, where each object

i is represented as a point (xi, yi) ∈ R
2 (Figure 1). Each

subscription Sj is interested in objects that lie in the vertical

strip σj × R; topk(Sj) returns the k lowest among them.

Let S = R
2 denote the subscription space, where each

subscription Sj with range of interest σj = [ℓj , rj] is mapped

to the point σ⋆
j = (ℓj , rj) ∈ R

2 (Figure 2). Object i is

mapped to the northwest quadrant θi with apex at (xi, xi);
i.e., θi = {(ℓ, r) | ℓ ≤ xi ≤ r}. Sj is interested in object

i only if σ⋆
j ∈ θi. A CN message Msg(ℓI , rI , ℓO, rO, xi, yi)

corresponds to notifying, with (xi, yi), all subscriptions in the

rectangle with southeast and northwest corners at (ℓI , rI) and
(ℓO, rO), respectively.
To further capture how the objects’ y-values affect their

ranking, let S̃ = S × R denote the lifted subscription space,

where the third dimension corresponds to y-values. A sub-

scription Sj is mapped to σ̃j , the vertical line passing through

σ⋆
j ; i.e., σ̃j = σ⋆

j × R. Each object i is mapped to the octant

θ̃i = θi × [yi,∞) = {(ℓ, r, y) | ℓ ≤ xi ≤ r ∧ yi ≤ y},
with apex at (xi, xi, yi). A y-value update Upd(xi, y

old
i →

ynewi) corresponds to vertically translating θ̃i so that its apex

moves from (xi, xi, y
old
i) to (xi, xi, y

new
i). For subscription

Sj , topk(Sj) is the list of objects corresponding to the first k
octants that line σ̃j intersects in S̃, going in the +y direction.

We now introduce the concept of influence regions, which

allows us to describe the answers to range top-k range queries

geometrically. We define the level of a point ξ ∈ S̃ with

respect to O, denoted by λ(ξ), as the number of octants in

{θ̃i | 1 ≤ i ≤ |O|} lying on or below ξ. Consider object i and
its corresponding quadrant θi ∈ S and octant θ̃i ∈ S̃. We can

partition θi into a set of regions {θvi | v > 0}, where each θvi
contains the set of points whose projections onto the bottom

face of θ̃i have level v; i.e., θvi = {(ℓ, r) ∈ θi | λ((ℓ, r, yi)) =
v}. Let θ≤v

i =
⋃

0<u≤v θ
u
i . We call θ≤k

i the influence region

of object i, denoted IR(i). The following lemma establishes

the connection between an object’s influence region and its

membership in the subscriptions’ top-k lists. We keep all

proofs in Appendix A for better readability.

Lemma 1. (xi, yi) ∈ topk(Sj) iff σ
⋆
j ∈ IR(i).

It turns out that IR(i) and θ≤v
i in general have a regular

shape that is easy to compute, as shown by the following

lemma. Recall that firstv(xi, yi,←) (resp. firstv(xi, yi,→))
denotes the set of x-values of the first v objects in O to the

west (resp. east) of xi with y-values less than yi.

Lemma 2. Consider object i with values (xi, yi). Let

• ℓ1 > ℓ2 > · · · > ℓv denote the list returned by

firstv(xi, yi,←) (padded with −∞ if fewer than v values

are returned), and

• r1 < r2 < · · · < rv denote the list returned by

firstv(xi, yi,→) (padded with ∞ if fewer than v values

are returned).

θ≤v
i is an axis-aligned subregion of the quadrant θi,
with vertices (xi, xi), (ℓv, xi), (ℓv, r1), (ℓv−1, r1), (ℓv−1, r2),
. . . , (ℓ1, rv−1), (ℓ1, rv), (xi, rv) in clockwise order, ignoring

degenerate vertices with −∞ or ∞ coordinates.

Lemma 2 implies that IR(i) is shaped like a staircase

polygon in S with (xi, xi) as its apex and an ℓr-monotone

rectilinear chain with no more than k “steps,” as illustrated in

Figure 3. We define the influence interval of object i, denoted

II(i), to be the x-value range (ℓk, rk), where ℓk and rk are as

defined above. By Lemma 2, IR(i) is bounded from the west

by ℓ = ℓk and from the north by r = rk. Furthermore, the

quadrants in {θh | xh ∈ firstk(xi, yi,←) ∪ firstk(xi, yi,→)}
induce a partitioning of IR(i) into O(k2) (possibly open-sided)
rectangles, denoted IR�(i). For each rectangle ρ ∈ IR�(i),
all points within the projection of ρ onto the bottom face of

θ̃i in S̃ have the same level; we call this number the level

of rectangle ρ, denoted λ(ρ). Each θvi (v > 0) consists of

up to v rectangles of level v, arranged along a diagonal and

to the immediate southeast of θv+1
i ’s rectangles, as shown in

Figure 3.

It also follows from Lemma 2 that given firstk(xi, yi,←)
and firstk(xi, yi,→), IR(i) can be computed in time linear in

the number of vertices of IR(i).

III. EXACT ALGORITHMS

A. Subscription-Oblivious

Consider an event Upd(xi, y
old
i → ynewi), which moves the

octant θ̃i in the vertical direction from position yoldi to ynewi .

Let IRold(i) (resp. IRnew(i)) denote the influence region of

object i before (resp. after) the update. There are two cases:

yoldi > ynewi , which possibly raises object i’s rank, and yoldi <
ynewi , which possibly lowers object i’s rank.

Rank-raising update. This case is simple. It can be easily

seen that if yoldi > ynewi , then IRnew(i) ⊇ IRold(i). Every
subscription Sj in IRold(i) (i.e., σ⋆

j ∈ IRold(i)) must receive

(xi, y
new
i) to update the y-value of object i in topk(Sj).

Every subscription Sj in IRnew(i) \ IRold(i) must receive

(xi, y
new
i) as a new object in topk(Sj), which would displace

some other object from topk(Sj). In sum, it suffices to notify

all subscriptions in IRnew(i) with (xi, y
new
i). Since each CN

message reaches a rectangle in S, and IRnew(i) has up to k
“steps,” in the worst case we need k messages to tile IRnew(i),
as illustrated in Figure 4. The detailed algorithm, Paint-Dense-

IR, is presented in Algorithm 3 in Appendix E-A.

Its running time, dominated by the two firstk calls, is

O(t(n) + k).

Rank-lowering update. This case is more complex. If

yoldi < ynewi , then IRnew(i) ⊆ IRold(i). First, we notify

all subscriptions in IRold(i) with (xi, y
new
i) using no more

than k messages, in the same way as we tile IRnew(i) for

a rank-raising update. These messages allow subscriptions to

update the y-value of object i in their top-k lists. For those in

IRnew(i), no more messages are needed.

Next, for each subscription in IRold(i) \ IRnew(i), it needs
to further receive an object that will replace i in its top-k
list.6 Clearly, such objects must have their influence regions

expanded. We say these objects are exposed by the ranking-

lowering update. Our task then is to notify the subscriptions

in IRold(i) \ IRnew(i) with respective exposed objects.

6Note that this subscription must receive (xi, y
new
i) before receiving the

replacement object; otherwise, the replacement object would appear to be out
of the top-k list because of the stale y-value of i.

What are these exposed objects? Imagine that we increase

object i’s y-value continuously from yoldi to ynewi , i.e., sweep-

ing the octant θ̃i from its old position to its new position in S̃.

Let IRz(i) and IIz(i) denote the influence region and influence
interval of i when its y-value is set to z. It turns out that, as
we sweep from z = yoldi to z = ynewi , the exposed objects are

precisely those whose octants are crossed by IRz(i) × [z, z]
(i.e., projection of i’s influence region on the bottom face

of θ̃i), by the lemma below. Furthermore, during the sweep,

areas gradually “lost” by IRz(i) (which starts out as IRold(i)
and eventually shrinks to IRnew(i)) are “gained” by exposed

objects’ influence regions, as shown in Figure 5.

Lemma 3. Let ∆ = Upd(xi, y
old
i → ynewi) where yoldi <

ynewi . Let h1, h2, . . . , hν denote the sequence of objects whose

corresponding octants are crossed by IRz(i) × [z, z] in S̃ as

we increase z continuously from yoldi to ynewi .

• h1, h2, . . . , hν are the set of objects exposed by ∆.

• For notational convenience, let h0 = i. For each hj

(1 ≤ j ≤ ν), IRold(hj) ⊆ IRnew(hj), and IRnew(hj) \
IRold(hj) = IRyhj−1

+ǫ(i) \ IRyhj
+ǫ(i), for an arbitrarily

small value ǫ.

Intuitively, each object hj whose octant is crossed by

IRz(i) × [z, z] during the sweep must be exposed for the

following reason. Consider the point z = yhj
− ǫ right before

crossing. Any subscription S in θki ∩ θhj
⊆ IRz(i) ∩ θhj

is

interested in both objects i and hj , and i ranks the k-th in

topk(S). When z changes from yhj
− ǫ to yhj

+ ǫ, objects i
and hj swap their ranks, and hj would enter topk(S) as the

result of the update. On the other hand, objects whose octants

are not crossed during the sweep are not exposed, because of

the following. For any such object h, when z crosses yh during

the sweep (if at all), IRz(i) ∩ θh = ∅, implying that object i
ranks strictly lower than the k-th for subscriptions interested

in both i and h; therefore, swapping i and h’s ranks would

not put h into any top-k list.

We now describe the algorithm in more

detail. During the sweep, we maintain the list

Lz (resp. Rz), which is initialized by firstk(xi,
yoldi ,←) (resp. firstk(xi, y

old
i ,→)) and always contains

the x-values of the first k objects in O to the west (resp.

east) of xi with y-values less than z, padded with −∞ (resp.

∞) if there are fewer than k such objects. By Lemma 2, Lz

and Rz allow us to readily obtain IRz(i), IIz(i), and the

partitioning IRz
�(i) of IRz(i) as needed. The next exposed

object above z corresponds to the object with the minimum

y-value in the 3-sided rectangle IIz × (z,∞) in E, and can

be found by miny(II
z(i), z), as illustrated in Figure 6.

Say the exposed object found is hj . We incrementally

update Lz and Rz by adding xhj
to the appropriate list (Lz if

xhj
< xi, or R

z otherwise), and removing from that list the x-
value furthest from xi. Lemma 2 tells us how this incremental

update to Lz and Rz shrinks IRz(i). The area lost from IRz(i)
is shaped as a series of up to k rectangles along a diagonal in

the northeast direction, as illustrated in Figure 5. Specifically,

l5 l4 l3 l2 l1

r1

r2

r3

r4

r5

r6

123456

2

3

4

5

6

34

4

5

5

56

6

6

6

7

7

7

7

7

8

8

8

8

9

9

910

10

11

i

Fig. 4. Tiling IRnew(i) (shaded, k =
5) by CN messages (shown with thick
outlines).

345678

l5 l4 l3 l2 l1

123456

5

6

6

7

78

8

9

910

10

11

9 8 7101112

9 8 7 6 5 4

7 6 5 4 3 2

r2

r3

r4

r5

r6

r1

i

hj

Fig. 5. Effect on IRz(i) of encountering exposed object hj during the sweep. Before the encounter, IRz(i)
contains both darkly and lightly shaded rectangles (level numbers before the encounter are shown in Figure 4);
after the encounter, IRz(i) contains only the lightly shaded rectangles. The difference, which is gained by hj

as IRnew(hj) \ IRold(hj), is tiled by CN messages shown with thick outlines.

x

y

ynewi

yoldi 1 2

3 4 5
6 7
8

IIz(i)
z

Fig. 6. Sweep in E (k = 3). The width of the shaded area at y = z corresponds
to IIz(i). Exposed objects are numbered in the order encountered.

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���������

������
������
������

������
������
������
�����������������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��������
��������
��������

��������
��������
����������������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���������
���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
������
���
���
���

���
���
���
������

���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

1 2

3 4
5 6
7
8

Fig. 7. Tiling IRold(i) \ IRnew(i) by CN messages. Rectangles with
the same fill pattern are for the same exposed object.

we “paint” over the intersection of IRz(i) and θhj
(quadrant

of the exposed object), incrementing the level numbers by 1.
Rectangles in the updated IRz

�(i) with level greater than k
should be removed from IRz(i). By Lemma 3, these rectangles

together form IRnew(hj)\ IRold(hj). Hence, we generate one
CN message for each such rectangle with the exposed object

values (xhj
, yhj

).
When the sweep stops at z = ynewi , we will have completely

tiled IRold(i)\ IRnew(i) by messages associated with exposed

objects, as shown in Figure 7. The complete algorithm, Paint-

Dense, is presented in Algorithm 3 in Appendix E-A. Pro-

cessing each exposed object hj takes O(t(n)+µj) time where

µj ≤ k is the number of messages generated for hj . Therefore,

tiling IRold(i)\IRnew(i) takesO(νt(n)+
∑

1≤j≤ν(µj+log k))
time, where ν is the number of exposed objects. Initializing

Lz and Rz for the sweep and tiling IRold(i) take O(t(n)+k)
time, so the overall time is O(ν(t(n)+ log k)+µ+k), where
µ is the total number of messages generated.

Discussion Paint-Dense’s time complexity is summarized

below.

Theorem 1. Paint-Dense runs in time O(t(n)+k) for a rank-

raising update, and O(νt(n)+µ+k) time for a rank-lowering

update, where µ is the number of messages generated and ν
is the number of objects exposed by a rank-lowering update.

For a rank-lowering update, ν < µ ≤ (ν + 1)k.

If we disallow subscriptions to receive false positives, we

show that Paint-Dense is optimal in the number of messages

that it generates for dense subscriptions.

Theorem 2. For dense subscriptions, the number of CN

messages generated by Paint-Dense is the minimum possible

for any exact algorithm.

The next result reveals the inherent complexity in handling

range top-k subscriptions. Although the worst case for a rank-

lowering update event can be quite bad (exposing Θ(|O|)

objects), we do not expect it to be common in practice. In

fact, as the following theorem shows, the expected number of

messages is only Θ(k2) if objects to be updated are picked

randomly.

Theorem 3. For any exact algorithm given dense subscrip-

tions, a rank-raising update event requires Θ(k) CN messages

and a rank-lowering update event requires Θ(nk) CN mes-

sages in the worst case. If each rank-lowering update event

chooses an object to update uniformly at random, the expected

number of CN messages required is Θ(k2).

B. Subscription-Aware

If we give the server the knowledge about the distribution of

subscriptions, the number of CN messages generated by the

server can be reduced. In particular, we can avoid sending

messages whose corresponding rectangles in S contain no

subscriptions, and can combine multiple messages into one

as long as their bounding rectangle contain no extraneous

subscriptions and they carry the same object values.

The general problem can be formulated as a geometric

optimization problem: Given a subset of subscriptions P ⊆ S

(to notify with the same object values), find a set of rectangles

G in S such that every point of P lies in exactly one rectangle

of G and no point of S\P lies in any rectangle of G. The goal is

to minimize the number of rectangles in G. Figure 8 illustrates

this problem. A brute-force approach is to compute the set

P and then solve the standard rectangular covering problem

on P. However, doing so requires us to enumerate potentially

large sets of affected subscriptions, which we would like to

avoid, and this problem is NP-complete in general [1].

A better approach would be to take a list of (at most k)
rectangles Gdense produced by Paint-Dense (corresponding to

a list of messages with the same object values) as a compact

description of P = Gdense ∩ S, and then solve the problem on

Gdense with the knowledge of S. A simple solution is to go

Fig. 8. Reducing the number of rectangles
covering P. Subscriptions in P are shown as
circles while those in S\P are shown as dots.
Rectangles in Gdense are shaded; rectangles
in the optimal covering are shown with thick
outlines.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

i

h′

(lz , rz)

Fig. 9. Finding the next interesting exposed object.
The staircase is the current IRz(i). Circles represent
subscriptions inside IRz(i), and are enclosed by the
dashed quadrant with apex at (ℓz , rz). Object h′,
with the darkly shaded quadrant, is an example of an
exposed, but inessential object.

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

i

IR(i)

θ≤2ki

(a)

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
�����

��
��
��

��
��
��
��
���
���
���
���
���

���
���
���
���
������
���
���

���
���
���
���
���
���

���
���
���

i

(b)

Fig. 10. Covering regions (shown with dark shade)
using fewer rectangles (shown with thick outlines) by
allowing false positives. (a) Covering IR(i) (a staircase)
with ε = 1; (b) covering IRnew(i) \ IRold(i) (a

diagonal chain) with ε = 1
3
.

through each rectangle G ∈ Gdense and set G to snap(G) on

S; if snap(G) = ∅ (i.e., G contains no subscriptions), simply

discard G. However, this solution misses the opportunity to

combine multiple rectangles into one without introducing false

positives, as illustrated in Figure 8. Furthermore, it is possible

that the entire Gdense produced by Paint-Dense for an exposed

object contains no subscriptions, in which case we would like

to avoid examining this exposed object and generating Gdense

in the first place.

Algorithm Paint-Sparse achieves both goals above. To

achieve the first goal of being able to merge rectangles,

we take a greedy approach. Recall from Section III-A that

Paint-Dense generates either a list of south-north rectangles

forming staircase (for an updated object’s influence region) or

a list of rectangle forming a diagonal chain (for an exposed

object’s gain in influence region). In either case, we order

the given rectangles Gdense = {G1, G2, . . .} from west to

east. We process Gj’s in order to produce the output set

Ggreedy. IfGj can be accommodated by enlarging the rectangle

G we last produced in Ggreedy without introducing false

positives (i.e., MEB(G, snap(Gj))∩ (S \ Gdense) = ∅, where

MEB denotes minimum enclosing box), we replace G by

MEB(G, snap(Gj)). Otherwise, we add snap(Gj) (if it is not
∅) to Ggreedy. Thanks to the special properties of rectangle

sets produced by Paint-Dense, we can show that this greedy

approach, and Paint-Sparse as a whole, is within a factor of

2 optimal in the number of messages generated for any exact

algorithm (without assuming dense subscriptions).

Theorem 4. Given any set of subscriptions, the number of

CN messages generated by Paint-Sparse is at most twice the

minimum possible for any exact algorithm.

The cost of each greedy step is dominated by the test of

whether G can accommodate Gj . This test can be done by

evaluating a small constant number of snap queries.7 Since

|Gdense| ≤ k, Paint-Sparse spends O(k logm) time to generate

messages for the updated object and for each exposed object.

We call an exposed object h interesting if the gain in h’s
influence region contains some subscription in S; i.e., we must

generate some message with h’s values. To achieve the second

goal above of skipping inessential exposed objects without

enumerating all exposed objects, Paint-Sparse modifies the

7Specifically, we cover the region MEB(G, snap(Gj)) \ G \ snap(Gj)
with at most 3 rectangles, and check whether snap returns ∅ for all of them.

method of finding the next exposed object as follows. Suppose

the sweep is currently at position z, where we set the updated
object i’s y-value to z. Recall that IRz(i) and IIz(i) denote

the influence region and influence interval of i at this point.

With the knowledge of S, let ℓz = min{ℓ | (ℓ, r) ∈ S∩IRz(i)}
and rz = max{r | (ℓ, r) ∈ S ∩ IRz(i)}; i.e., (ℓz, rz) is the

apex of the smallest southeast quadrant Qz ⊆ S enclosing

all subscriptions in IRz(i), as illustrated in Figure 9. Paint-

Dense finds the next exposed object h to process as h =
miny(II

z(i), z) in E. However, h is interesting only if its

quadrant θh intersects with quadrant Qz containing actual

subscriptions. Hence, we find the next exposed object h to

process as h = miny(II
z(i) ∩ [ℓz, rz], z) = miny([ℓ

z , rz], z)
in E, allowing Paint-Sparse to skip inessential exposed objects.

Note that given Lz and Rz (see Section III-A), ℓz and rz

can be computed from the answers of up to k snap calls

in S, one for each south-north rectangle covering IRz(i).
Thus, compared with Paint-Dense, Paint-Sparse spends an

extra O(k logm) time for finding each interesting exposed

object, and as discussed above, an extra O(k logm) time to

merge messages for the updated object and for each interesting

exposed object. The overall time complexity of Paint-Sparse

is summarized below.

Theorem 5. Paint-Sparse runs in time O(t(n) + k logm) for
a rank-raising update, and O(ν̌(t(n) + k logm)) time for a

rank-lowering update, where ν̌ is the number of interesting

exposed objects (to distinguish it from ν in Theorem 1, the

number of exposed objects). For a rank-lowering update, ν̌ <
µ̌ ≤ (ν̌ + 1)k, where µ̌ is the number of messages generated

by Paint-Sparse.

Remark. If the entire S is too expensive to maintain for

the server, it can maintain a small sketch of S, e.g., a cover

of S by B rectangles in S for a parameter B, and use this

cover instead of S itself in Paint-Sparse. This approach would

provide a continuous trade-off between the cost of maintaining

and utilizing information about subscriptions and the number

of CN messages generated.

Paint-Sparse’s optimization of merging multiple messages,

while reducing the number of messages, increases the areas of

rectangles in S corresponding to messages. Larger areas may,

for some CN implementations, imply higher dissemination

costs. Nonetheless, we note that message merging in Paint-

Sparse is done in a careful way to avoid false positives,

so these larger areas do not reach any more subscriptions

and traffic to subscriptions remains minimized. Furthermore,

reducing the number of messages is effective in relieving the

bottleneck at the server and message injection point.

IV. EXTENSIONS

A. Batch Processing

For some applications, events can be batched; subscriptions

only need to have their top-k lists correctly updated at the end

of the batch. Processing events in batched sequence E one at

a time would be an overkill: enough messages would be sent

such that each subscription Sj can construct all intermediate

states of topk(Sj) during E. Given that only the final state

of topk(Sj) is needed at the end of E, we want to minimize

the number of messages delivered to the subscriptions. We

give an algorithm Paint-Batch, which achieves this goal within

the problem setting of Section II-A without assuming new

dissemination interfaces or capabilities. To process individual

events, Paint-Batch can use any algorithm A (either Paint-

Dense or Paint-Sparse), with only minor modifications. Paint-

Batch itself does not assume the knowledge of S (though the

version using Paint-Sparse uses S indirectly).

The key idea is to pre-process E in a way such that event-at-

time processing by A (with some modifications) will minimize

the number of messages subscriptions receive. Let IRold(i)
(resp. IRnew(i)) denote the influence region of object i before
(resp. after) E. Paint-Sparse proceeds in four steps:

1) Pre-process. First, if multiple events in E update the

same object, we coalesce them into one. More pre-

cisely, if E contains the sequence Upd(xi, y
(0)
i →

y
(1)
i), . . . ,Upd(xi, y

(c−1)
i → y

(c)
i), we replace them by a

single Upd(xi, y
(0)
i → y

(c)
i). Next, we split the set E into

two, E↓ and E↑, where E↓ (resp. E↑) contains all events

that decrease (resp. increase) y-value.

2) Apply E↓ to O. Let T denote the data structure we maintain

for O. We update T with using events in E↓. We do not

generate any messages in this step.

3) Generate messages for E↑ and apply E↑ to O. We process

events in E↓ (all of which are rank-lowering) in descending

order of the new values using A, but with the following

modifications. 1) If A generates messages for an exposed

object that is updated in E↑ or will be later updated in E↓,

we discard such messages and do not send them. 2) If A is

processing a ranking-lowering update for an object i whose
messages have been discarded earlier, instead of notifying

the region IRold(i) with i’s updated values as A would

normally do, we notify the region IRnew(i) ∪ IRpre(i),
where IRpre(i) denotes i’s influence region right before

we start processing E↑. To implement these modifications,

we do not need to remember all IRpre(i)’s, which would

require Θ(nk) space. It turns out that we can maintain an

O(n)-space data structure so that IRpre(i) can be computed

on demand, without increasing the time complexity of A.

More specifically, besides the data structure T normally

maintained for O, we maintain an additional data structure

T′ indexing the set of objects updated in E↑. T′ is initially

empty before we start processing E↑. When processing

Upd(xi, y
old
i → ynewi) ∈ E↑ in the current iteration, in

addition to updating the y-value of object i in T to ynewi ,

we insert (xi, y
old
i) into T′. While computing IRnew(i) uses

T, computing IRnew(i) ∪ IRpre(i) uses T and T′.

4) Generate messages for E↓. For each object i updated in

E↓, we notify the region IRnew(i) with i’s new value. We

simply follow A to compute the messages by querying T.

We now give some intuition behind the design of Paint-Batch.

• Why do we generate message for E↓ (Step 4) after E↑

(Step 2)? Suppose that an object i is unchanged by E, and

i ∈ topk(Sj) both before and after E for some subscription

Sj ; in this case, we do not want to notify Sj with i.
However, some objects updated in E↓ may temporarily

lower the rank of i to below k, before some other objects

updated in E↑ raise the rank of i to within k again. Sending

messages generated for E↓ before E↑ would cause Sj to

drop i, forcing us to notify Sj with i later when processing

E↑. Deferring messages for all rank-raising updates avoids

this problem.

Also, if we process E↓ before E↑, an update to object i
in E↓ would enlarge IR(i), and updates to other objects in

E↑ might further enlarge IR(i); therefore, we would need

to generate messages involving i every time i is exposed

in E↑. Although doing so would not cause subscriptions to

receive unnecessary messages, it leads to more messages

compared with our approach, which guarantees that for

each updated object i, we only generate messages involving

i once (when we process the event updating i).

• Why are the modifications to A necessary when processing

E↑ (Step 3)? Suppose we are currently processing an update

that exposes object i, causing it to enter topk(Sj) for some

subscription Sj at this point. If i will be later updated

in E↑, it is possible that i will leave topk(Sj) at that

point. Without the modifications, we would notify Sj with

i unnecessarily.
On the other hand, if i is updated in E↓, then the gains

in IR(i) during the processing of E↑ should be ignored,

because they will covered by IRnew(i) when i is processed
in Step 4.

• Why do we process E↑ in sorted order (Step 3)? Processing

E↑ in descending order of the new values means that once

we process an event updating object i in E↑, i will never be
exposed again. With this property, for each updated object

i, we only generate messages involving it once (when we

process its update event). Without this property, we may

need to generate messages involving i every time when i
is exposed after it is updated. Although doing so would

not cause subscriptions to receive unnecessary messages,

it may lead to more messages compared with our approach.

• Why do we need to apply E↓ to O (Step 2) before processing

E↑? Without applying E↓ to O, we would essentially

process E↑ followed by E↓. It is possible for E↑ to expose

an object i, causing it to temporarily enter topk(Sj) for

some subscriptions; however, E↓ may subsequently make i
leave topk(Sj). Notifying Sj with i would be unnecessary.

Applying E↓ to O before processing E↑ (in conjunction

with way we process E↑) ensures that when processing

each update in E↑, every object i exposed by this update

will remain in the final topk(Sj) for every Sj that receives

i.

To conclude, we have the following result.

Theorem 6. Paint-Batch minimizes the number of messages

each subscriber receives. Given an event sequence E, Paint-

Batch based on Paint-Dense runs in O(|E| log |E| + ν̄t(n) +
µ̄) time, and Paint-Batch based on Paint-Sparse runs in

O(|E| log |E|+ ν̄(t(n)+k logm)) time, where µ̄ is the number

of messages generated by Paint-Batch and ν̄ is the number of

objects in these messages.

B. Approximate Algorithms

To further alleviate the potential message injection bottleneck,

more reduction in the number of CN messages generated

by the server is possible with approximate algorithms. They

allow subscriptions to receive unnecessary messages contain-

ing false positive updates to top-k lists, which are discarded

by post-processing at the subscriptions. The basic idea is to

simplify the boundaries of regions to notify by judiciously

including some additional subscriptions. As a simple exam-

ple, Figure 10(a) shows that instead of tiling a staircase-

shaped IR(i) with multiple messages, we can use a single

message with rectangle MEB(IR(i)). Although subscriptions

in MEB(IR(i)) \ IR(i) would get object i as a false positive,

we can show that i would still rank within top 2k for these

subscriptions, because MEB(IR(i)) ⊆ θ≤2k
i , thanks to the

special structures of θvi ’s established in Section II-C.

Our approximate algorithms, based on Paint-Dense and

Paint-Sparse, generalize this simple but effective idea. They

are parameterized by ε ∈ { 1
k−1 ,

1
k−2 , . . . ,

1
2 , 1}, which con-

trols the degree of approximation. Consider the task of noti-

fying an ordered list Gdense of no more than k rectangles (as

defined in Section III-B), where Gdense ⊆ IR�(i) for some

updated or exposed object i. We can divide Gdense into no

more than 1/ε sublists, such that each sublist contains no more

than ⌈εk⌉ adjacent rectangles. We cover the rectangles in each

sublist by their minimum enclosing box. Figure 10(b) shows

an example of covering a diagonal chain (representing the gain

in some exposed object’s influence region) with 3 rectangles

(ε = 1
3).

Paint-Dense can be made approximate by post-processing

each Gdense as above to generate messages. Paint-Sparse can

be made approximate by processing Gdense before subjecting it

to greedy message merging. We call the resulting approximate

algorithms Paint-Dense(ε) and Paint-Sparse(ε), respectively.
Each subscription Sj follows the same protocol in Section II-A

for maintaining topk(Sj). Sj may receive an object that should

not enter topk(Sj), or one that is already in topk(Sj) and

has not changed value. Such false positives are automatically

ignored by the protocol, and objects in these messages are

limited to those ranked around the k-th, as shown by the

theorem below. This theorem also shows the reduction in the

number of messages and the running times of the approximate

algorithms.

Theorem 7. With the approximate algorithms, a subscription

Sj will receive a message with object i only if 1) i ranks

between (1 − ε)k and (1 + ε)k, or 2) i is already in the top

(1 + ε)k but its value has changed.

For approximate algorithms, a rank-raising update gener-

ates no more than 1/ε messages; a rank-lowering update

generatesO(n/ε) messages, with no more than 1/ε per expose
object for Paint-Dense(ε) and no more than 1/ε per interest-

ing expose object for Paint-Sparse(ε). If each rank-lowering

update chooses an object to update uniformly at random, the

expected number of messages generated is O(k/ε).

Paint-Dense(ε) runs in time O(t(n)+ k) for a rank-raising

update, and O(νt(n) + µ̂ + k) time for a rank-lowering

update, where ν is the number of exposed objects and µ̂ is

the number of messages generated by Paint-Dense(ε). Paint-
Sparse(ε) runs in time O(t(n)+k+logm/ε) for a rank-raising
update, and O(ν̌(t(n)+k+logm/ε)) time for a rank-lowering
update, where ν̌ is the number of interesting exposed objects.

C. Range Conditions in Higher Dimensions

Our geometric framework is quite general and extends to

high dimensions and different types of ranges. Each object i
now has d numeric attributes {X(1), · · · , X(d)} for selection
by subscriptions, and an additional numeric attribute Y for

ranking. The event space E is now R
d+1, and each object i

is represented as a point (x
(1)
i , x

(2)
i , . . . , x

(d)
i , yi) ∈ E. Each

subscription Sj specifies a region σj ⊆ R
d, which can be a

d-dimensional box, halfspace, ball, or simplex, or any other

shape, and contains the top-k objects among the ones in which

it is interested. Each subscription is mapped to a point σ∗
j

and each object i to a region θi in the subscription space

S so that Sj is interested in object i iff σ∗
j ∈ θi. The

exact mapping depends on the shape of subscriptions. If each

σ is a d-dimensional box
∏d

h=1[ℓ
(h)
j , r

(h)
j], then S = R

2d,

σ∗
j = (ℓ

(1)
j , r

(1)
j , · · · , ℓ(d)j , r

(d)
j), and θi is the orthant {ξ ∈

R
2d | ξ(2i−1) ≤ xi, ξ

(2i) ≥ xi, 1 ≤ i ≤ d}. If each σj

is a halfplane x(d) ≥ a
(1)
j x(1) + · · · + a

(d−1)
j x(d−1) + a

(d)
j ,

then S = R
d, σ∗

j = (a
(1)
j , . . . , a

(d)
j), and θi is a halfspace

ξ(d) ≤ −x(1)
i ξ(1) − · · · − x

(d−1)
i ξ(d−1) + x

(d)
i . If d = 2

and each σj is a disk of radius rj centered at (aj , bj),
then S = R

3, σ∗
j = (aj , bj , a

2
j + b2j − r2j) and θj is the

halfspace ξ(3) ≤ 2x
(1)
i ξ(1) + 2x

(2)
i ξ(2) − x

(1)
i − x

(2)
i . It can

be verified that, in each case, Sj is interested in i iff σ∗
j ∈ θi.

The notion of influence region IR(i) ⊆ θi can be extended

to high dimensions. When the y-value of an object i is

updated, we update IR(i) from IRold(i) \ IRnew(i) (if yi is

increased) into constant-size regions, and send one O(1)-size
message for each such region. Computing the decomposition

of IRold(i) \ IRnew(i) or IRnew(i) becomes more challenging

and the number of regions increases, typically exponentially

in the worst case, with dimension. However, many of these

regions are empty, so Paint-Sparse is more effective in high

dimensions. In many cases, it is possible to analyze the number

of messages generated by the algorithm. The theorem below

gives such a result for the case of rectangles.

Theorem 8. If the input objects are i.i.d. in R
d with

their attributes being independent and each subscription

is an axis-aligned rectangle, then Paint-Dense generates

O((k lnd−1 n)d+1) expected number of CN messages to pro-

cess an update event.

V. EVALUATION

Network setup. For message dissemination, we use a CN

based on Meghdoot [16] and the content addressable net-

work [28]. This CN uses a network of brokers to deliver

CN messages of the format described in Section II-A. It

partitions the subscription space S into zones, each owned by

a broker responsible for all subscriptions within this zone;

we call this broker the gateway broker of these subscriptions.

Each zone can forward messages to its adjacent zones, so

messages may travel over multiple hops to their destinations.

We use INET [12] to generate a 20,000-node IP network,

and randomly pick 1,000 nodes as brokers. Subscriptions are

located randomly within the network, and object update events

also originate from random locations.

For our approaches, we designate the broker whose zone

covers the center of S as the server, which maintains the

database of all objects O. In the case of sparse subscriptions,

the server additionally maintains the database of all subscrip-

tions S (but not how they are assigned to brokers). Events are

first routed to the server, where they are reformulated into a

sequence of CN messages.

Approaches compared. Our approaches all use CN for mes-

sage dissemination and only differ in their message generation

algorithms. Hence, we use the names of these algorithms to

refer to these approaches: exact ones include Paint-Dense and

Paint-Sparse, and approximate ones include Paint-Dense(ε)
and Paint-Sparse(ε) with different ε settings. We compare

them with the following approaches, which sample the space

of less sophisticated alternatives:

Unicast An event is first sent to the server, which in this

case tracks all objects, all subscriptions, and how subscriptions

are assigned to gateway brokers. The server computes the set

of affected subscriptions. For each affected subscription Sj , the

server unicasts to Sj’s gateway broker the id j and the change

to topk(Sj) (which can be captured by one object). This

approach is exact in that it notifies only affected subscriptions.

For comparison, we consider the following algorithm for

computing unicast messages, which uses some but not all

insights from our algorithms.8 Given Upd(xi, y
old
i → ynewi),

the server first computes IIold(i) ∪ IInew(i) = (ℓ, r), and

finds all subscriptions in (ℓ, xi] × [xi, r) ⊆ S. Next, the

server processes each such subscription Sj in turn. For a rank-

lowering update, the exposed object has y-value between yoldi

and ynewi , and can be found by miny(σj , y
old
i).

CN-Relax This approach uses the same CN as our ap-

proaches, but does not need a server. An event Upd(xi, y
old
i →

ynewi) directly enters the CN asMsg(xi, xi,−∞,∞, xi, y
new
i),

which reaches all subscriptions whose ranges include xi. In

effect, CN-Relax treats each range top-k subscription simply

as a range subscription. Each subscription must maintain all

objects within its range at all times, from which the top k
can be computed. This approach is approximate in that it may

notify unaffected subscriptions.

Metrics. We consider the following metrics in evaluation:

Outgoing traffic from the server Measured by the total

number of bytes sent by the server. A larger number means

higher network stress at the server.

Traffic in the broker network Measured by the total num-

ber of bytes sent across network hops, excluding those from

gateway brokers to their subscriptions (which are accounted

for by the redundancy metric discussed below). Depending

on what we consider a “hop,” there are two metrics: overlay

traffic treats each overlay link (i.e., a link between two brokers

without going through other brokers) as a hop, while IP

traffic treats each underlying IP link as a hop. IP traffic better

reflects physical reality but it depends heavily on the CN

implementation; overlay traffic better reflects how we use the

CN (as a black box). Well-designed CNs try to make overlay

routes as efficient as IP routes, which helps close the gap

between these two metrics.

Redundancy in messages received by subscriptions Mea-

sured by N̂/N−1, where N̂ denotes the number of messages

received by subscriptions and N denotes the number of

messages received by subscriptions under an exact approach.

A larger redundancy means higher last-hop traffic and more

work for subscriptions. Exact approaches have 0 redundancy.

Server processing cost Measured by the number of calls

(by type, as discussed in Section II-B) against the underlying

data structures when generating messages. We choose to count

the number of calls because the running time depends on

the choice of data structures. Our implementation uses data

structures that are easier to implement and efficient in practice,

but not asymptotically optimal.

Workloads. Most results in this section use synthetic work-

loads, which allow us to vary their characteristics. Unless

specified otherwise, there are 10,000 objects, whose x-values
follow one of two distributions: 1) Uniform: The x-values
are uniformly distributed over the possible x-value range.

8Alternatively, we may simply use Paint-Dense to obtain the list of affected
tiles in S, and then look up affected subscriptions within these tiles. In this
case, the server processing cost becomes that of Paint-Dense plus a term linear
in the number affected subscriptions, which is strictly (much) less efficient
than Paint-Dense and does not offer an interesting comparison.

(a) Unicast (top) vs. Paint-Dense (bottom) (b) Paint-Dense (top) vs. Paint-Sparse (bottom) (c) Paint-Sparse (top) vs. Paint-Sparse(1) (bottom)

Fig. 11. Average outgoing traffic (# bytes) from server per event.

2) Clustered: The x-values lie in 10 clusters, whose centers

partition the possible x-value range into 11 segments of length

w. Each cluster gets 10% of the objects. For each object in a

cluster, the distance between its x-value and the cluster center

follows a Gaussian distribution with standard deviation w/8.
To generate an event, we pick an object to update uniformly

at random. Its y-value is increased or decreased, each with 0.5
probability. The new y-value is then chosen uniformly random

from the possible range of y-values.
Unless specified otherwise, the number of subscriptions is 2

million. We consider the following subscription distributions:

• Uniform: The subscriptions are uniformly distributed in S.

• Clustered: Most subscriptions lie in 10 clusters in S. Let

P be a set of 10,000 × 10,000 grid points. We first

randomly pick a set C of 10 centers in S and use a

mixture model to assign probability to each point p ∈ P .

A parameter λ controls the standard deviation of each

cluster ci ∈ C. Let σ be (max−min)λ/4, where max
and min are the maximum and minimum values in the

domain. For each point p ∈ P , F (p) =
∑10

i=1 Fi(p), where
Fi(p) = exp(−0.5‖ci− p‖/σ2). The probabilities are then
normalized such that they sum to 1.

• Correlated (to clustered object distribution): Subscriptions

are generated from the 10 clusters of the clustered object

distribution. For each subscription in a cluster, the distance

between its endpoints from the cluster center follows a

Gaussian distribution with standard deviation w/8.

• Anti-correlated (to clustered object distribution): As with

the correlated case above, we generate subscriptions using

the clusters of the clustered object distribution. However,

we shift each cluster center by w/2 and ignore the last

cluster, such that each subscription cluster center is located

midway between two consecutive object cluster centers for

the object distribution.

In addition to synthetic workloads, we have obtained infor-

mation on 2,031 stocks from Yahoo! Finance. For each stock,

we collected data for earnings per stock (EPS), the average

recommendation (RECO, which varies from 1, strong buy, to

5, strong sell, over the past month), as well as the open and

close prices over 30 days. EPS is then used to convert each

price to price-to-earning ratios (PER). Thus, we have a trace

of events, each being an update of PER with a RECO constant.

400,000 subscriptions are generated and each requests the k

lowest PER over a RECO range.

We first present results for the uniform object distribution

and uniform subscription distribution.

Outgoing traffic from server. Figure 11 shows the outgoing

traffic from the server per event, averaged over all events in

the workload, as we vary k and the number of subscriptions

(m). For clarity, we compare only two approaches per plot.

Note that CN-Relax is not compared because it is a serverless

approach. In Figure 11(a), we see that Paint-Dense’s outgoing

traffic is invariant to m, but Unicast’s outgoing traffic is not

scalable in m and k. When m = 5,000,000 and k = 20,
Unicast and Paint-Dense generate 316,158 and 3,501 bytes,

resp. Figure 11(b) shows that by taking into account S,

Paint-Sparse incurs even lower outgoing traffic than Paint-

Dense; the gap is wider with fewer (sparser) subscriptions.

Figure 11(c) shows that approximation further relieves any

potential message injection bottleneck at the server.

Figure 12(a) provides more details on the outgoing traffic

produced by different approaches. Although outgoing traffic

increases for all approaches as k increases, our approaches

clearly outperform Unicast. Paint-Dense generates 1.5 orders

of magnitude less outgoing traffic than Unicast, whereas Paint-

Sparse, Paint-Dense(1), and Paint-Sparse(1) generate between
2 and 2.5 orders of magnitude less. Since the number of

messages generated by Paint-Dense and Paint-Dense(1) is

invariant to m, their lead over Unicast can widen arbitrarily as

subscription density increases. The same trend holds for Paint-

Sparse and Paint-Sparse(1); they always produce no more

messages than Paint-Dense and Paint-Dense(1), resp.

For approximation algorithms, Figure 12(b) shows that

increasing ε effectively decreases server outgoing traffic.

Figures above only show average outgoing traffic. When

we look at the maximum amount of outgoing traffic from the

server per event (which reveals bottlenecks better than the

average), in Figure 13(a), we see an even bigger (multiple

orders of magnitude) advantage of our approaches over Uni-

cast. For Unicast, the maximum ongoing traffic is proportional

to m, but remains the same when k varies because the

number of affected subscriptions does not depend on k in

the worst case (e.g., when the most popular object’s y-value
is dramatically changed). When m = 5,000,000, Unicast’s
maximum outgoing traffic is 39,998,000 bytes, compared with

only 31,752 bytes for Paint-Sparse (with k = 20).

(a) Various approaches (b) Varying ε for Paint-Dense(ε)

Fig. 12. Average outgoing traffic (# bytes) from server per event.

Fig. 13. Unicast (top) vs. Paint-Sparse (bottom). (a) Maximum outgoing
traffic from server for an event. (b) Number of calls per event.

Traffic in broker network. Figures 14(a) and 14(b) show

the amounts of overlay and IP traffic (resp.) incurred per

event in the broker network, averaged over all events in the

workload. Trends in these two figures are consistent. We see

that Unicast performs worst among all approaches for all

values of k tested and that Paint-Sparse leads Unicast by an or-

der of magnitude. Furthermore, approximation is effective for

reducing in-network traffic, as evidenced by Paint-Sparse(1).
CN-Relax generates the same amount of in-network traffic for

all k because it ignores ranking. While it may appear here

that CN-Relax is attractive when k > 10 (largely because CN-

Relax needs not be concerned with exposed objects), bear in

mind that 1) CN-Relax requires subscriptions to maintain all

objects within their ranges, which is expensive; and 2) CN-

Relax generates excessive last-hop traffic, as we will see next.

Redundancy in messages received by subscriptions. Ta-

ble I shows the total number of messages received by subscrip-

tions per event (averaged over the workload) for Paint-Sparse

(or any exact algorithm). Table II shows the overall redundancy

in messages received by subscriptions (averaged over the

workload) for the approximate approaches. Note that all exact

approaches would have 0 redundancy, and an approximate

approach would effectively be exact if 1/ε ≥ k. Clearly, CN-
Relax sends a lot of unnecessary messages to subscriptions,

negating the advantages in its serverless approach and its

relatively lower broker network traffic when k > 10. For

our approximate approaches, we see that as ε increases, their

reduction in traffic from the server and within the broker

network comes at the expense of higher redundancy. Still, they

offer a spectrum of user-controllable trade-offs that are more

attractive than the two extremes: exact algorithms on one hand

and CN-Relax on the other.

Server processing cost. Figure 13(b) gives a high-level view

of the average number of calls per event to the underlying

data structures made by Unicast and Paint-Sparse. Tables III

(varying k) and IV (varying m, the number of subscriptions)

offer a more detailed breakdown and comparison. As k or m

(a) Overlay (b) IP

Fig. 14. Traffic in broker network per event.

k 1 2 5 10 15 20

Paint-Sparse 444.141 939.76 2211.14 4190.21 6082.94 7904.26

Table I. Total number of messages received by subscriptions per event.

Approaches k = 1 2 5 10 15 20

Paint-Sparse(.125) 0 0 0 0.015 0.0234 0.034

Paint-Sparse(.25) 0 0 0.027 0.061 0.070 0.080

Paint-Sparse(.5) 0 0 0.11 0.14 0.16 0.17

Paint-Sparse(1) 0 0.16 0.29 0.30 0.32 0.34

CN-Relax 1440.2 680.14 288.49 151.76 104.23 79.98

Table II. Redundancy in messages received by subscriptions.

increases, both Paint-Sparse and Unicast make more calls, but

Unicast makes orders of magnitude more than Paint-Sparse.

Table IV shows9 that the number of miny calls by Unicast

is linear in m and Paint-Dense is invariant to m. For Paint-

Sparse, when m increases, there are fewer inessential exposed

objects, so Paint-Sparse needs to examine more exposed ob-

jects during a rank-lowering update. However, our experiments

show that the number of calls is increased only by a factor

of roughly 2 even with dense subscriptions; therefore, our

approach is much more scalable.

Batch processing. Next, we evaluate the effectiveness of

our batch processing algorithm, Paint-Batch, by comparing

it with Online, which simply processes the batched event

sequence one event at a time, and Coalesce, which coalesces

events updating the same object into one before processing,

but does not sort or group them into E↓ and E↑. The sequence

contains 50,000 events, and we vary k. Figure 16(a) compares

the total number of messages generated over the sequence;

Figure 16(b) compares the total number of messages received

by all subscriptions; Figure 16(c) compares the total number

of miny calls. In all figures, Paint-Batch, with both coalescing

and sorting optimizations, dominates the other approaches.

The savings provided by sorting (between Paint-Batch and

Coalesce, especially in the number of messages received by

subscriptions) are significant, though they are dwarfed by the

savings provided by coalescing.

Trends across synthetic workloads. Results for other work-

loads are similar, and exhibit trends that confirm intuition.

Figure 15(a) shows the ratio between the number of mes-

sages generated by Paint-Sparse and Paint-Dense for various

workloads. With knowledge of S, Paint-Sparse (as well as

Paint-Sparse(ǫ), which is not shown here) generates less

traffic with more clustered subscriptions, because of more

opportunities for skipping empty regions in S. The ratio is

9Included here for completeness, snap() is function used by Paint-Sparse to
find the smallest rectangle containing all subscriptions inside a given rectangle.
See [33] for details.

(a) Total number of messages generated (b) Total number of messages received by subscriptions (c) Total number of miny calls

Fig. 16. Batch processing approaches.

k
Paint-* Paint-Dense Paint-Sparse Paint-Sparse Unicast

firstk # miny # miny # snap9 # miny

1 2 1.12 0.72744 1.2284 444.141

2 2 1.73 1.08988 2.95254 1086.44

5 2 3.57 2.59596 12.06538 2846.1

10 2 6.60 5.5568 40.69192 5453.64

15 2 9.63 8.57692 84.65234 8032.39

20 2 12.63 11.58048 143.20416 10587.4

Table III. Average number of calls per event; increasing k.

Paint-Sparse

m (×105) # miny # firstk # snap9

2 3.52 2 29.87

8 4.84 2 37.34

40 5.94188 2 42.0509

100 6.26988 2 42.86982

Dense 6.60 2 43.36

Unicast; k = 10
m (×105) # miny

2 545.23

8 2181.49

40 10906.4

100 27267.5

Table IV. Average number of calls per event; increasing m.

Fig. 15. (a) Paint-Sparse vs. Paint-Dense for various workloads, with #
objects = 1,000. (b) Average outgoing traffic from server per event, with
y-value changes following a Gaussian distribution.

1 with ten million uniformly distributed subscriptions, which

are basically dense. Furthermore, Paint-Sparse skips a greater

number of inessential exposed objects for the anti-correlated

workload than for the correlated one.

In practice, y-values of objects rarely change in a com-

pletely random fashion. To see how this observation impacts

the performance of our algorithms, instead of choosing new

y-values uniformly at random, we let the difference between

the new and old y-values follow a Gaussian distribution with

standard deviation set to c/8 times the length of the range of

possible y-values. A smaller c means changes are less volatile.

Figure 15(b) shows the traffic from the server for two settings

of c. We see that Paint-Dense generates fewer messages when

c is smaller because fewer objects are exposed by less volatile

value (and hence rank) changes.

Yahoo! Finance data. Results for Yahoo! Finance workload

are largely consistent with other results presented in this

section, so we sample some here comparing Paint-Sparse,

Paint-Sparse(1), CN-Relax, and Unicast. In terms of outgoing

traffic from the server, this workload allows Paint-Sparse

and Paint-Sparse(1) to inject a significantly fewer number of

messages into CN than other workloads, because the y-values
(price-to-earning ratios) only change slightly for most events;

(a) Overlay (b) IP

Fig. 17. Traffic in broker network per event; Yahoo! workload.

Approaches k = 1 2 5 10 15 20

Paint-Sparse(1) 0 0.19 0.25 0.35 0.39 0.38

CN-Relax 706.51 361.22 147.13 72.67 48.38 36.11

Table V. Redundancy in messages received; Yahoo! workload.

Paint-Sparse
k # miny # firstk # snap9

1 0.5 2 1

2 0.5 2 2

5 0.51 2 5.05

10 0.54 2 10.35

15 0.57 2 16.02

20 0.61 2 22.18

Unicast
k # miny

1 176.01

2 409.44

5 1050.48

10 2278.27

15 3510.16

20 4614.24

Table VI. Average number of calls per event; Yahoo! workload.

consequently, most rank-lowering updates expose only a few

objects. In terms of traffic in the broker network, Figures 17(a)

and 17(b) show that Paint-Sparse and Paint-Sparse(1) generate
two orders of magnitude less traffic than Unicast. While CN-

Relax again seems attractive around k = 10, it does poorly

with the next metric, redundancy in messages received by

subscriptions, shown in Table V. Here, CN-Relax results in

far more unnecessary traffic to subscriptions with double- and

triple-digit redundancy, compared with less than 0.4 for Paint-

Sparse(1) (and 0 for Paint-Sparse because it is exact). Finally,

in terms of server processing cost, Table VI shows that Paint-

Sparse makes few calls. On the other hand, the number of

miny calls remains huge for Unicast, because it still checks all

subscriptions in (ℓ, xi]× [xi, r) ⊆ S even though the majority

of events affect no subscriptions.

VI. RELATED WORK

Much work on scalable processing and notification of sub-

scriptions has been don in the context of publish/subscribe

systems (e.g., [3, 7, 26]), but traditionally they consider only

selection queries over message attributes. Recent work seek

to extend them to support more complex subscriptions (e.g.,

[13, 10, 11, 9]), or use them for scalable implementation of dis-

tributed stream processing [34] and query result caching [15].

The work most relevant to this paper is [10], which discusses

scalable processing and dissemination of range top-1 subscrip-

tions. We build on their approach of leveraging CN for efficient

dissemination. However, as demonstrated in this paper, the

case of k > 1 is considerably more complex and requires new

algorithms data structures; we also consider batch updates and

approximate solutions.

Other recent work on publish/subscribe has also addressed

ranking, but with various different subscription semantics;

little is known about how best to support standard range top-k
subscriptions. Drosou et al. [14] consider ranking events by

relevance and diversity. Machanavajjhala et al. [21] consider

the reverse problem—finding most relevant subscriptions for

a published event. In the sliding window model, Pripuzic et

al. [27] maintains a buffer to store relevant events that have

a high probability of entering a top-k result in the future,

and Haghani et al. [17] continuously monitor top-k queries

over incomplete data streams. Lu et al. [20] consider an

approximate top-k real-time publish/subscribe model, in which

each subscriber approximately receives the k most relevant

publications before a deadline.

Range top-k querying is well studied in the database liter-

ature, both in terms of access method design (e.g., [30]), and

integration with relational query processing and optimization

(e.g., [19]). The key difference is that we focus on a different

dimension of scalability here: instead of making a single range

top-k query scale over a large dataset, we consider how to

scale over a large number of ongoing range top-k queries.

Our work is related to incremental maintenance of materi-

alized top-k views. [32] handles the challenge that an object

“escaping” from the top k requires obtaining the new k-th
ranked object. The idea is to reduce the expected amortized

maintenance cost over time by maintaining a top-k′ view

where k′ ≥ k is allowed to vary. This approach (which

optimizes across time) complements ours (which optimizes

across subscriptions), and will be interesting to explore in

conjunction with our approximate algorithms.

Our problem is related to that of reverse top-k queries [31],

where, given a data update, affected queries are identified and

their results are updated. Their definition of top k is different

from ours, however: queries do not specify range conditions

but instead vectors of weights that customize relative impor-

tance of different ranking criteria. Also, the issue of efficiently

notifying affected queries over a network is not considered.

There also has been much research on top-k processing in

a distributed setting, e.g., [23, 6, 2, 25]. Most previous work

focuses on computing or monitoring the result for a single

top-k query over a set of distributed sources, where each

source provides either individual object scores or partial scores

that must be aggregated across sources before being used

for ranking. Processing can be pushed inside the network to

reduce communication, e.g., [22, 29]. Compared with the work

above, our problem setting is inverted—instead of having one

query over many distributed objects, we have many distributed

subscriptions over one stream of object updates, which call for

different techniques. Nonetheless, some ideas from distributed

top-k monitoring [2, 29]) may be interesting to explore as

future work. Namely, some solutions for distributed top-k
monitoring involve installing conditions at the sources that

trigger reporting; intuitively, lowly-ranked objects with little

chance of entering the top k are associated with loose reporting

conditions with reduced monitoring costs. The question of

applying this approach to our setting, however, is whether we

can handle a large number of reporting conditions (mn).

VII. CONCLUSION

In this paper we have tackled the problem of supporting a large

number of range top-k subscriptions in a wide-area network.

We address the dual challenges of subscription processing

and notification dissemination, by carefully separating and

interfacing these tasks in a way that achieves efficiency with

off-the-shelf dissemination networks and without increasing

system complexity. Our techniques are based on a geometric

framework, enabling us to characterize the subset of subscrip-

tions affected by an event as a region in an appropriately

defined space, and solve the problem of notifying affected

subscriptions as one of tiling the region with basic shapes.

The array of techniques we have developed—ranging from

those that use the knowledge of subscriptions to those that

do not, from event-at-time to batch processing, from exact to

approximate, and from one-dimensional to multi-dimensional

ranges—speak to the power of this framework. Theoretical

analysis and empirical evaluation show that our approach holds

substantial advantages over less sophisticated ones.

As mentioned in Section I, our techniques can be applied

to other application settings. In essence, we have devised an

effective way to divide the problem of supporting a large num-

ber of stateful subscriptions into two tasks: one that computes

a compact description of the changes, and one that further

uses this description to update affected subscriptions. The first

task is shielded from the complexity of handling subscriptions,

while the second is shielded from the complexity of handling

objects. This division allows each task to be scaled up inde-

pendently. This paper uses CN to scale up dissemination for

the second task, but there are more possibilities. 1) In settings

where we need not deliver result updates over a network, we

can scale up the second task of updating subscriptions in an

embarrassingly parallel fashion, without duplicating the effort

of the first task or requiring each processing node to maintain

the set of objects. 2) Instead of using a single server to

perform the first task, we can distribute the database of objects

across multiple nodes, which process incoming events and

generate outgoing messages in a distributed fashion. Details

are available in the Appendix C. This extension allows us

to handle the general publish/subscribe setting where events

originate from multiple, distributed publishers.

REFERENCES

[1] Pankaj K. Agarwal and Subhash Suri. Surface approximation and
geometric partitions. SIAM J. Comput., 27:1016–1035, August 1998.

[2] Brian Babcock and Chris Olston. Distributed top-k monitoring. In
Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, SIGMOD ’03, pages 28–39, New York, NY, USA,
2003. ACM.

[3] Guruduth Banavar, Tushar Ghandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In ICDCS ’99: Proceedings

of the 19th IEEE International Conference on Distributed Computing
Systems, page 262, Washington, DC, USA, 1999. IEEE Computer
Society.

[4] C. Buchta. On the average number of maxima in a set of vectors. Inf.

Process. Lett., 33:63–65, November 1989.
[5] Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali. Content

Delivery Networks. Springer, Berlin, Germany, 2008. ISBN 978-3-
540-77886-8.

[6] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed
networks. In Proceedings of the twenty-third annual ACM symposium

on Principles of distributed computing, PODC ’04, pages 206–215, New
York, NY, USA, 2004. ACM.

[7] A. Carzaniga, D. S. Rosenblum, , and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Transactions

on Computer Systems, 19(3), 2001.
[8] Antonio Carzaniga and Alexander L. Wolf. Content-based networking:

A new communication infrastructure. In IMWS ’01: Revised Papers

from the NSF Workshop on Developing an Infrastructure for Mobile

and Wireless Systems, pages 59–68, London, UK, 2002. Springer-Verlag.
ISBN 3-540-00289-8.

[9] Badrish Chandramouli and Jun Yang. End-to-end support for joins
in large-scale publish/subscribe systems. In Proceedings of the 2008
International Conference on Very Large Data Bases, pages 434–450,
Auckland, New Zealand, August 2008.

[10] Badrish Chandramouli, Junyi Xie, and Jun Yang. On the
database/network interface in large-scale publish/subscribe systems. In
Proceedings of the 2006 ACM SIGMOD International Conference on

Management of Data, pages 587–598, Chicago, Illinois, USA, June
2006.

[11] Badrish Chandramouli, Jeff M. Phillips, and Jun Yang. Value-based
notification conditions in large-scale publish/subscribe systems. In
Proceedings of the 2007 International Conference on Very Large Data

Bases, pages 878–889, Vienna, Austria, September 2007.
[12] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott J. Shenker,

and Walter Willinger. Towards capturing representative as-level internet
topologies. In Proceedings of the 2002 ACM SIGMETRICS interna-

tional conference on Measurement and modeling of computer systems,
SIGMETRICS ’02, pages 280–281, New York, NY, USA, 2002. ACM.

[13] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an
internet-scale XML dissemination service. In Proceedings of the 2004
International Conference on Very Large Data Bases, pages 612–623,
Toronto, Canada, September 2004.

[14] Marina Drosou, Kostas Stefanidis, and Evaggelia Pitoura. Preference-
aware publish/subscribe delivery with diversity. In DEBS ’09: Proceed-
ings of the Third ACM International Conference on Distributed Event-

Based Systems, pages 1–12, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-665-6. doi: http://doi.acm.org/10.1145/1619258.1619267.

[15] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd
Mowry, Christopher Olston, and Anthony Tomasic. Scalable query result
caching for web applications. Proc. VLDB Endow., 1:550–561, August
2008. ISSN 2150-8097.

[16] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El
Abbadi. Meghdoot: content-based publish/subscribe over p2p networks.
In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX interna-
tional conference on Middleware, pages 254–273, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[17] Parisa Haghani, Sebastian Michel, and Karl Aberer. Evaluating top-
k queries over incomplete data streams. In Proceeding of the 18th
ACM conference on Information and knowledge management, CIKM
’09, pages 877–886, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-512-3. doi: http://doi.acm.org/10.1145/1645953.1646064. URL
http://doi.acm.org/10.1145/1645953.1646064.

[18] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Effi-
cient colored orthogonal range counting. SIAM J. Comput., 38:982–
1011, June 2008. ISSN 0097-5397. doi: 10.1137/070684483. URL
http://portal.acm.org/citation.cfm?id=1405087.1405106.

[19] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song.
Ranksql: query algebra and optimization for relational top-k queries. In
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, SIGMOD ’05, pages 131–142, New York, NY,
USA, 2005. ACM.

[20] Xinjie Lu, Xin Li, Tian Yang, Zaifei Liao, Wei Liu, and Hongan Wang.
Rrps: A ranked real-time publish/subscribe using adaptive qos. In
Proceedings of the International Conference on Computational Science

and Its Applications: Part II, ICCSA ’09, pages 835–850, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02456-6.

[21] Ashwin Machanavajjhala, Erik Vee, Minos Garofalakis, and Jayavel
Shanmugasundaram. Scalable ranked publish/subscribe. Proc.

VLDB Endow., 1(1):451–462, 2008. ISSN 2150-8097. doi:
http://doi.acm.org/10.1145/1453856.1453906.

[22] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: A tiny aggregation service for ad-hoc sensor networks.
In Proceedings of the 2002 USENIX Symposium on Operating Systems

Design and Implementation, Boston, Massachusetts, USA, December
2002.

[23] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k
queries over web-accessible databases. ACM Trans. Database Syst., 29:
319–362, June 2004. ISSN 0362-5915.

[24] Y. Nekrich. Space efficient dynamic orthogonal range
reporting. Algorithmica, 49:94–108, October 2007. ISSN
0178-4617. doi: 10.1007/s00453-007-9030-9. URL
http://portal.acm.org/citation.cfm?id=1296685.1296690.

[25] Thomas Neumann, Matthias Bender, Sebastian Michel, Ralf Schenkel,
Peter Triantafillou, and Gerhard Weikum. Distributed top-k aggregation
queries at large. Distrib. Parallel Databases, 26:3–27, August 2009.
ISSN 0926-8782.

[26] O. Papaemmanouil and U. Cetintemel. SemCast: Semantic multicast
for content-based data dissemination. In Proceedings of the 2005

International Conference on Data Engineering, Tokyo, Japan, April
2005.

[27] Krešimir Pripužić, Ivana Podnar Žarko, and Karl Aberer. Top-k/w
publish/subscribe: finding k most relevant publications in sliding time
window w. In DEBS ’08: Proceedings of the second international

conference on Distributed event-based systems, pages 127–138, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-090-6. doi:
http://doi.acm.org/10.1145/1385989.1386006.

[28] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput.

Commun. Rev., 31:161–172, August 2001.
[29] Adam Silberstein, Kamesh Munagala, and Jun Yang. Energy-efficient

monitoring of extreme values in sensor networks. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 2006.

[30] Yufei Tao and Dimitris Papadias. Range aggregate processing in spatial
databases. IEEE Trans. on Knowl. and Data Eng., 16:1555–1570,
December 2004. ISSN 1041-4347.

[31] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Norvag.
Reverse top-k queries. In In ICDE, pages 365–376, 2010.

[32] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Efficient
maintenance of materialized top-k views. In Proceedings of the 2003

International Conference on Data Engineering, pages 189–200, Banga-
lore, India, March 2003.

[33] Albert Yu, Pankaj K. Agarwal, and Jun Yang. On processing and notify-
ing range top-k subscriptions. Technical report, Duke University, 2011.
http://www.cs.duke.edu/dbgroup/papers/rangetopksub.pdf.

[34] Yongluan Zhou, Ali Salehi, and Karl Aberer. Scalable delivery of stream
query result. Proc. VLDB Endow., 2:49–60, August 2009. ISSN 2150-
8097.

APPENDIX A. PROOFS

Proof of Lemma 1. (xi, yi) ∈ topk(Sj)⇔ At most k−1
objects that are interested by Sj have y-value smaller than ob-

ject i⇔ The number of octants containing the point (ℓj , rj , yi)
is at most k due to lifting function⇔ λ(ℓj , rj , yi) ≤ k by the

definition of level ⇔ σ⋆
j ∈ IR(i). �

Proof of Lemma 2. Every point (ℓ, r) ∈ θi must satisfy at

least one of the following four cases:

Case 1: (Outside IR(i)) ℓ ≥ ℓv. Then λ(ℓ, r, yi) > v as it is

contained by octants θ̃i and θ̃ℓz in S̃ for all z ∈ {1, 2, · · · , v}.
Case 2: (Outside IR(i)) r ≥ rv . Then λ(ℓ, r, yi) > v is

contained by octants θ̃i and θ̃rz in S̃ for all z ∈ {1, 2, · · · , v}.
Case 3: (Outside IR(i)) ℓ ≤ ℓv−j and r ≥ rj in S for some

j ∈ {1, 2, · · · , v}. Then λ(ℓ, r, yi) > v since it is contained

by octants θ̃i, θ̃rz , and θ̃ℓz′ in S̃ for all z ∈ {1, 2, · · · , j} and
z′ ∈ {1, 2, · · · , v − j}.
Case 4: (Inside IR(i)) ℓ > ℓv−j+1 and r < rj in S for

some j ∈ {1, 2, · · · , v}. Then λ(ℓ, r, yi) ≤ v since it is only

contained by octants θ̃i, θ̃rz , and θ̃ℓz′ for all z ∈ {1, 2, · · · , j−
1} and all z′ ∈ {1, 2, · · · , v − j}. �

Proof of Lemma 3. First, each object hj must be exposed

by ∆. Consider the point z = yhj
− ǫ right before crossing.

Any subscription S in θki ∩ θhj
⊆ IRz(i) ∩ θhj

is interested

in both objects i and hj , and i ranks the k-th in topk(S).
When z changes from yhj

− ǫ to yhj
+ ǫ, objects i and hj

swap their ranks, and hj would enter topk(S) as the result of
the update. On the other hand, objects whose octants are not

crossed during the sweep are not exposed. For any such object

h, when z crosses yh during the sweep (if at all), IRz(i) ∩
θh = ∅, implying that object i ranks strictly lower than the

k-th for subscriptions interested in both i and h; therefore,
swapping i and h’s ranks would not put h into any top-k list.

Second, IRold(hj) ⊆ IRnew(hj) because hj never drops in

any subscription’s ranking during the rank-lowering update of

object i 6= hj . Third, IR
new(hj) \ IRold(hj) = IRyhj−1

+ǫ(i) \
IRyhj

+ǫ(i), for an arbitrarily small value ǫ because during the

rank-lowering update, hj’s rank is never changed before and

after objects i and hj swap their ranks. �

Proof of Theorem 1. As shown in Algorithm 3, a rank-

raising update involves two firstk calls, each of which takes

O(t(n) + k) time, and one Paint-Dense-IR call which takes

O(µ) time, where µ ≤ k. Thus, the running time of a rank-

raising update is O(t(n) + k). For a rank-lowering update,

initializing Lz and Rz for the sweep and tiling IRold(i) take

O(t(n) + k) time. Processing each exposed object hj takes

O(t(n) + µj) time, where µj ≤ k is the number of messages

generated for hj . The O(t(n)) term comes from one miny
call. The insertion or deletion of an element from Lz and

Rz takes O(log k) time, which is dominated by t(n). Thus,
tiling IRold(i) \ IRnew(i) takes O(νt(n) +

∑
1≤j≤ν µj) time,

where ν is the number of exposed objects. The overall time is

O(νt(n) + µ + k), where µ is the total number of messages

generated. In addition, ν < µ ≤ (ν +1)k. The first inequality

follows from the fact that at least one message is generated for

each exposed object and object i itself. The second inequality

follows from the fact that at most k messages is generated for

object i and each exposed object. �

Proof of Theorem 2. It is trivial to show that both Algo-

rithms 4 and 5 generate the minimum number of messages for

any object. The theorem immediately follows from the fact

that messages are only generated for object i and the exposed

objects. �

Lemma 4. O(k) objects are injected into network if the object

whose value is increased is chosen uniformly at random.

Proof. For an object i, let ηi be the number of objects j such

that increasing the value of j to∞ causes Algorithm 3 to inject

a message involving the object i. Then the expected number

of objects injected by the rank-lowering update is bounded by∑n

i=1 ηi/n. Moreover, if increasing the value of j injects a

message involving i, then yj < yi and the event expands the

influence region IR(i). This happens only when xj ∈ L(i) ∪
R(i) before the event but not after its y-value has increased.

Since |L(i) ∪ R(i)| ≤ 2k, ηi ≤ 2k, and thus the expected

number of objects injected is O(k).

Proof of Theorem 3. Recall that Algorithms 4 and 5 generate

at most k messages for object i and each exposed object.

Decreasing the y-value of object i injects only one object,

namely i itself. In the worst case, increasing the value of an

objects causes all n objects to be exposed. By Lemma 4, the

expected number of objects injections is O(k). This completes

the proof of the theorem.

k

k

n

n

n

n

k

n-1

n-1

n-1

n-1

n-1

n-2n-2

n-2

n-2

n-2

n-3

n-3

n-3

n-3

n-3

n-3

n-3

n-2

n-1

n

n-4n-4n-4

n-4

n-4

n-4

n-4

n-i-1

n-i

n-i

n-i

n-i

n-in-i-1

n-i-1

n-i

n-i-1 n-i-1 n-i-1

k

1

n

n-2

n-4

n-6

n-1

n-3

n-5

3
5

2

4

i

Fig. 18. Lower bound construction: y-values are written along the diagonal
line; number inside each rectangle is the level of object i.

Finally, Figure 18 shows that if the value of i is increased
from 1 to n + 2, Ω(nk) messages need to be injected into

the network, namely, one for each rectangle in the figure. The

same example also shows the bound on the expected number

of messages is also tight. �

Proof of Theorem 4. Let Gdense = {G1, G2, . . .} and

P = Gdense ∩ S. Let Pa = P ∩ Ga. If a rectangle G ∈ Gopt

contains points of Pa and Pb for 1 ≤ a < b ≤ k, then

G also covers Pa+1, . . . ,Pb−1. This property implies that

the greedy algorithm is 2-approximate because each G is

covered by one or two rectangles generated by Paint-Sparse.

By construction, Paint-Sparse skips all uninteresting exposed

objects. Therefore, the number of messages generated by

Paint-Sparse is at most twice the minimum possible for any

exact algorithm. �

Proof of Theorem 5. For each exposed object, Paint-Sparse

also performs snap O(k) queries on the set of subscriptions

besides a miny query on the set of objects. Therefore, a rank-

lowering update requires an additional O(k logm) cost for

each interesting exposed object. The remaining part of the

proof follows from the same argument as in the proof of

Theorem 1. �

Lemma 5. When an event about object i is processed,

IRcurrent(i) (IRpre(i)) is the minimum set of subscriptions in

IRold(i) that must be notified in order to produce the correct

final top-k lists for those subscriptions if the event is a rank-

raising update (rank-lowering update) for object i.

Proof. If the event is a rank-raising update for object i, mes-

sages are generated after all events in E have been processed.

Hence, the union of the messages for object i is exactly

IRnew(i), in which every subscription needs to be notified. If

the event is a rank-lowering update for object i, processing E↓

first guarantees that all events that can shrink IR(i) have been
processed, therefore, all the subscriptions in IRpre(i) must be

notified about the update of object i no matter how the events

in E is ordered.

Lemma 6. If an object i ∈ topfinalk (Sj), i is never forced out

of Sj’s top-k list because of space constraint.

Proof. First, when a message about object i is generated, all

the other objects whose old and new values are larger and

smaller than object i’s new value must have been processed.

Hence, if object i belongs to Sj’s final top-k list, it must

be higher than k-th in Sj’s ranking. Second, during a rank-

lowering update for object i, a message about object i is first
sent to every subscription Sj that has i in its top-k list. Thus,

if a message about an exposed object is also sent to Sj , object

i must have dropped to k-th in Sj’s ranking. No other objects

in Sj’s list are forced to be removed because of the arrival of

the exposed object. Third, since messages for all rank-raising

updates are generated at the end of the batch process, any

object that is replaced by a new arrived object i must satisfy

one of the following two conditions: 1) it ranks lower than

object i in the final top-k list and 2) its value will later become

lower than the value of the k-th item in the top-k list due to a

rank-raising update and it will re-enter the final top-k list.

Lemma 7. Let L and L′ be the lists returned by

firstk(xi, y
old
i ,←) on T and T′, respectively. Let R and

R′ be the lists returned by firstk(xi, y
old
i ,→) on T and T′,

respectively. Let L∗ = {ℓ1 > ℓ2 > · · · > ℓk} contain the

first k values in L ∪ L′ (padded with −∞ if |L| < k).
let R∗ = {r1 < r2 < · · · < rk} contain the first k
values in R ∪ R′ (padded with ∞ if |R| < k). IRpre(i) is

an axis-aligned subregion of the quadrant θi, with vertices

(xi, xi), (ℓv, xi), (ℓv, r1), (ℓv−1, r1), (ℓv−1, r2), . . . , (ℓ1, rv−1),
(ℓ1, rv), (xi, rv) in clockwise order, ignoring degenerate

vertices with −∞ or ∞ coordinates.

Proof. Let Lpre = {ℓpre1 , ℓpre2 , · · · , } and Rpre =
{rpre1 , rpre2 , · · · , } be the lists returned by first(xi, y

old
i ,←)

and firstk(xi, y
old
i ,→) right before we start processing E↑.

Let L = {ℓ1, ℓ2, · · · , } and R = {r1, r2, · · · , } be the lists

returned by first(xi, y
old
i ,←) and firstk(xi, y

old
i ,→) for the

current event. If L = Lpre and R = Rpre, we are done.

Otherwise, all objects in Lpre\L and Rpre\R must have been

modified because no other objects’ ranking is raised to force

those objects out of L and R during E↑. Hence, all objects

in Lpre\L and Rpre\R must be indexed by T′ using their

old y-values, and they can be retreived by two firstk calls on

T′.

Lemma 8. No subscription receives more than one message

for the same object i.

Proof. The coalescing step guarantees that no two events

update the same object i. Our algorithm also guarantees that no

message for an object i will be generated if the value of i will
be updated later in the sequence. Messages generated for the

update of i completely pack IR(i) such that every subscription

in IR(i) receives one messsage for object i. After the value of
object i has been updated, IR(i) will never be shrunk since all

the remaining events are the rank-lowering updates for other

objects. Additional messages are generated for object i only
if the rank-lowering update for other events further expand

IR(i). However, these messages only cover the expanded part

of IR(i). Therefore, no subscription receives more than one

message for the same object.

Lemma 9. If a subscription Sj receives a message for an

object i and (xi, yi) /∈ topk(Sj) before the start of batched

processing, then (xi, yi) ∈ topk(Sj) at the end of batched

processing.

Proof. Assume Sj receives an update for an object i and

(xi, yi) /∈ topk(Sj) before the start of batch processing. The

only possible way that object i will not be in topk(Sj) by

the end of batch processing is that IR(i) will later be shrunk

such that it will not contain Sj . There are two cases, in which

IR(i) can be shrunk: the y-value of object i has increased,

or the y-value of another object l has decreased. The first

case cannot happen since the algorithm does not generate a

message for object i if its y-value will be updated later in the

sequence. For the second case, since E↓ is processed before E↑,

the current update must be a rank-raising update for object i.
However, as E↓ is sorted in ascending order of the new values,

ynewi < ynewl , so decreasing the y-value of l has no effect on

the rank of i for Sj .

Proof of Theorem 6. Lemma 5, 8 and 9 together imply

that Paint-Batch minimizes the number of messages each

subscriber receives. Paint-Batch requires sorting that takes

O(|E| log |E|) time. The other parts of the running times for

Paint-Batch follow from the same argument as in the proof of

Theorem 1 and 5. �

Proof of Theorem 7. By construction, the top-left and

bottom right vertices of each message generated for each

exposed object have rank (1 + ǫ)k and (1− ǫ)k, respectively.
Hence, any subscription in a message ranks between (1− ǫ)k
and (1 + ǫ)k. Similarly, the top-left vertex of a message also

ranks (1 + ǫ)k for a modified object i. The proof for the

number of messages and the running time follows from the

fact that O(1/ǫ) messages are generated for object i and each

expose object and from the same argument as in the proof of

Theorem 1 and 5. �

Proof of Theorem 8. Let H ⊂ E be the hyperplane normal

to the dth dimension of E. let i′ be the projection of object

i onto H. An object j is dominated by another object k with

respect to object i iff k′ ∈ MEB(j′, i′) ∈ H and k ranks

higher than j. Let U denote the set of objects dominated by

k objects with respect to object i. In S, the influence region

of i, IR(i), is defined by the k-skyband10 with respect to i.
The average size of the skyline for a set of i.i.d. points is

θ(lnd−1 n/(d−1)!) if attributes are uncorrelated [4]. Under the
same assumption, IR(i) is covered by Θ(k lnd−1 n/(d− 1)!)
orthants. The authors in [18] prove that if the number of

”octants” to cover an influence region in R
2d is z, then

the total number of rectangles for partitioning the influence

region will be zd in the worst case. Hence, IR(i) can be

partitioned into Θ((k lnd−1 n/(d− 1)!)d) rectangle messages.

Thus, Θ((k lnd−1 n/(d−1)!)d) rectangle messages are needed

for a modified object i and each exposed object.

The influence region of i, IR(i), is a rectilinear polyhedron

in S whose vertices are defined by the objects in Uk(i). Using
the same argument in the proof of Lemma 4, the expected

number of objects injected by the rank-lowering update is at

most (k lnd−1 n/(d − 1)!). This completes the proof for the

upper bound. The lower bound construction in Figure 18 can

be extended for high dimension. �

APPENDIX B. ILLUSTRATION OF RANK-LOWERING

UPDATE.

In Figure 19, we illustrate the sweep procedure in the rank-

lowering udpate shown in Figure 6.

APPENDIX C. DISTRIBUTING THE DATABASE

The central server can be replaced with multiple servers,

which together maintain the database of objects in a distributed

manner. Recall that objects are mapped to points on the diag-

onal of the subcription space, S. Suppose there are β servers.

We partition the diagonal into β zones and assign one server

to each zone for maintaining all objects in the zone. Each

zone owner maintains pointers to its two immediate (left and

right) neighboring zone owners along the diagonal. Consider

an event Upd(xi, y
old
i → ynewi), we first route the event to

the server that maintains the object i. Then we compute the

two queries firstk(xi, y
new
i ,←) and firstk(xi, y

new
i ,→) by two

linear traversals along the diagonal. As shown in Algorithm 1,

if the firstk query returns t < k objects on the left (right)

10The k-skyband is the set of objects dominated by at most k objects.

(a) Initial influence region of ob-
ject i, IR(i).

1

(b) Reach the first exposed ob-
ject.

1

2

(c) Reach the second exposed
object.

1

2

3

(d) Reach the third exposed ob-
ject.

1

2

3

4

(e) Reach the fourth exposed ob-
ject.

1

2

3

4

5

(f) Reach the fifth exposed ob-
ject.

1

2

3

4

5

6

(g) Reach the sixth exposed ob-
ject.

1

2

3

4

5

6

7

(h) Reach the seventh exposed
object.

side of object i, we traverse to the left (right) zone-owner

and retrieve the remaining k − t objects with a second firstk
query. We repeat this procedure until either k objects have

been retrieved or all the objects on the left (right) side of i
have been examined. Similarily, the query miny(σ, y0) can be

computed for a rank-lowering update as shown in Algorithm 2.

Let λs = [ℓs, rs] be the range of objects maintained by server

s. Given a query range σ = (ℓ, r), the server s computes

the object with the minimum y-value in the 3-sided rectangle

σ∩σs× (y0,∞). If ℓ < ℓs (r > rs), traverse to the left (right)

zone owner for the object with the minimum y-value in the

1

2

3

4

5

6

7

8

(i) Reach the eighth exposed ob-
ject.

Fig. 19. Illustration of the rank-lowering update shown in Figure 6.

1 10 100 1000 10000 100,000
0

10

20

30

40

50

k

L
e

n
g

th
 o

f
tr

a
v
e

rs
a

l

Fig. 20. Length of traversal (100 servers, 100,000 objects).

query range. Return the minimum among the objects returned

by the servers.

Suppose each of the β servers maintains n/β objects. For

an object i, if the probability that i ranks lower than object j
is 1/2 for all j 6= i, the expected number of servers traversed

for each firstk or miny query is 2kβ/n. For the case where

the input objects are i.i.d. in R
2 with their attributes being

independent, we empirically show that the expected number of

servers traversed for a firstk or miny query is O(log(k)β/n)
(See Figure 20).

Algorithm 1: firstk(xi, y
new
i , c)

begin1

if c = ‘←′ then2

L← firstk(xi, y
new
i ,←);3

if |L| < k then4

L← L ∪ getFirstKFromLeftNeighbor(xi, y
new
i ,←5

, k − |L|);

return L;6

else7

R← firstk(xi, y
new
i ,→);8

if |R| < k then9

R← R∪getFirstKFromRightNeighbor(xi, y
new
i ,→10

, k − |R|);

return R;11

end12

APPENDIX D. 1.5-DIMENSIONAL RANGE SUBSCRIPTIONS

In this section, we generalize our problem to addressing

the 1.5-dimensional range subscriptions. Each object has 2
numeric attributes {X1, X2} for selection by subscriptions,

and an additional numeric attribute Y for ranking (in ascending

order). The event space E is generalized to R
3, where object i

is represented as a point (x
(1)
i , x

(2)
i , yi) ∈ E. Each subscription

Sj specifies a region of interest for the 2 selection attributes,

denoted by σj = [ℓ
(1)
j , r

(1)
j]× (−∞, r

(2)
j] ⊆ R

2. The subscrip-

Algorithm 2: miny(σ, y0)

begin1

hj ← miny(σ ∩ σs, y0);2

if ℓ < ℓs then3

h′

j ← getMinYFromLeftNeighbor(σ, y0);4

if h′

j < hj then hj ← h′

j ;5

if r > rs then6

h′

j ← getMinYFromRightNeighbor(σ, y0);7

if h′

j < hj then hj ← h′

j ;8

return hj ;9

end10

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

σj

X(1)

X(2)

u5

u4

u3

u2

u1

u0
i

0

0

0

1

1

1

1

2

2

2

2

Fig. 21. Influence rectilinear polygon in E for k = 3.

tion space S is generalized to R
3, where each subscription Sj

is mapped to the point (ℓ
(1)
j , r

(1)
j , r

(2)
j). Object i is mapped to

the orthant in S with apex at (x
(1)
i , x

(1)
i , x

(2)
i), i.e., {(a, b, c) ∈

E | a ≤ x
(1)
i , b ≥ x

(1)
i , c ≥ x

(2)
i }. Subscription Sj is interested

in object i iff (ℓ
(1)
j , r

(1)
j , r

(2)
j) is contained in the orthant with

apex at (x
(1)
i , x

(1)
i , x

(2)
i).

We say that an object i1 is dominated by another object i2
with respect to object i iff

• the x(1)-value of object i2 is between those of objects i1
and i, i.e., x

(1)
i1

< x
(1)
i2

< x
(1)
i or x

(1)
i1

> x
(1)
i2

> x
(1)
i ,

• either the x(2)-value of object i2 is between those of objects
i1 and i or the x(2)-value of object i2 is less than that of

object i, i.e., x
(2)
i1

> x
(2)
i2

> x
(2)
i or x

(2)
i2

< x
(2)
i ,

• object i2 ranks higher than object i, i.e., yi2 < yi.

In Figure 21, suppose all the objects (in the figure) rank higher

than object i. The number next to each object i′ indicates the
number of objects dominating i′. Let Uk(i) denote the set

of objects dominated by fewer than k objects with respect to

object i. Uk(i) together form the influence rectilinear polygon

R ⊆ E (in comparison to the influence interval for 1-d range

subscriptions), which separates all the points dominated by at

most k− 1 objects from all the points dominated by at least k
objects. This immediately implies the following: First, object

i belongs to subscription Sj’s top-k list only if σj ⊆ R. For

instance, i ranks below k for σj in Figure 21. Second, an object

i′ is exposed during the rank-lowering update of object i only
if i′ is contained in the influence rectilinear polygon when yi
increases from yi′ − ǫ to yi′ + ǫ. We can also compute the

set of tiles that precisely describes the influence region of i
in S. For 1.5-dimensional range subscriptions, the influence

region of i, IR(i), is a rectilinear polyhedron whose vertices

−∞

∞

u5

u4
u3
u2
u1
u0

Fig. 22. Influence region in S; k = 3.

are determined by the objects in Uk(i) (see Figure 22).

A. Rank-raising update

−∞

Sweep upward

L2

L1

L0

R0

R1

R2

u3

u2

u2

u1

u1

Fig. 23. Computing the influence region in S.

Recall that given the two lists L and R, we can compute the

region of affected subscriptions in S for the single dimensional

range subscriptions efficiently. Now for 1.5-dimensional range

subscriptions, a plane is swept across the input objects from

x(2) = x
(2)
i to x(2) = ∞ in E. For each x(2)-value v ∈

[x
(2)
i ,∞), L contains the first k objects in O in the orthant

{(x(1), x(2), y) ∈ E | x(1) ≤ x
(1)
i , x(2) ≤ v, y ≤ yi} as

we proceed in the (-x(1))-direction. Similarly, R contains the

first k objects in O in the orthant {(x(1), x(2), y) ∈ E |
x(1) ≥ x

(1)
i , x(2) ≤ v, y ≤ yi} as we proceed in the (x(1))-

direction. We say an object i′ is active if yi′ ≤ yi. One

key observation is that L or R is changed only if the plane

crosses an active object (which ranks above object i) in the

influence rectilinear polygon R. Therefore, we can discretize

the continuous x(2)-attribute into a finite number of intervals

(endpoints determined by the active objects in R). When the

sweep plane crosses an active object j, we generate messages

to tile the region in S that precisely describes the set of affected

subscriptions whose x(2)-value is in (x
(2)
j′ , x

(2)
j], where j′ is

the last active object crossed by the sweep plane. The process

is illustrated in Figure 23. Notice that at each step during the

sweep, messages can be generated in the same way as for

the single dimensional range subscriptions, except that each

message is a 3-dimensional box intead of a rectangle (the

extra side ranges from x
(2)
j′ to x

(2)
j). Algorithm 7 shows the

sweep plane algorithm for computing the influence rectilinear

polygon R as well as (Lz ,Rz)
t
z=0, where t is the number of

active objects crossed by the sweep plane. The rank-raising

update is shown on lines 2— 7 in Algorithm 11.

B. Rank-lowering update

X(1)

X(2)

x
(2)
hj

u5

u4

u3

u2

u1

u0

Fig. 24. The new exposed object is shown as a circle. The influence rectilinear
polygon is shrunk by pruning the shaded region.

x
(2)
hj

∞

u5

u5

u4

u4

Fig. 25. Subscriptions in the shaded regions need to be notified.

Given the rank-lowering update of object i, we first compute

the influence rectilinear polygon R ∈ E and the influence

region in S for object i. Then all the subscriptions in the

influence region are notified of object i’s new y-value. Next,
we sweep the y-value of i continuously from yoldi to ynewi

(as in the case of the single dimensional range subscriptions).

For each exposed object hj in the rectilinear polygon in E,

we update the influence rectilinear polygon R ∈ E and the

new influence region in S as shown in Figures 24 and 25.

Messages are generated only for those subscriptions that must

receive the object hj . This is acheived by sweeping the plane

from x(2) = x
(2)
hj

to x(2) = q, where q is the minimum x(2)-

value such that x
(1)
hj
6= conv(L ∪ R). That is, if we shoot a

ray through the point (x
(1)
hj

, x
(2)
hj

, yhj
) in x(2) direction, it hits

Fig. 26. (a) Average outgoing traffic from server per event; (b) Maximum
outgoing traffic from server per event.

the boundary of R at x(2) = q.

How to find the next exposed object? In order to find the

next object in the rectilinear polygon, we partition the polygon

into rectangles and search for the next object in each rectangle

independently. Exactly one of them (the one with the minimum

y-value) is chosen to be the next exposed object. We store the

other retrieved objects to avoid searching for it again in the

future. Also, we can skip all inessential exposed objects by

shrinking the rectangles with the knowledge of subscriptions.

Merging messages. Recall that we have discretized the x(2)-

attribute into a set of intervals (determined by active points in

the current influence rectilinear polygon). We generate a set

of messages for each interval independently. However, some

messages generated at different intervals may be compatible

with each other, i.e., MEB(Msg1,Msg2) = Msg1 ∪Msg2. For

example, in Figure 25, two messages are generated for the

interval [x
(2)
hj

, u4) and two other messages for the interval

[u4, u5). We can combined those four messages into two

messages without introducing any false positives. Therefore,

in order to minimize the number of messages generated for an

exposed object, when messages are generated for an interval,

we check if they are compatible with the messages generated at

the previous interval and merge messages together if possible.

C. Evaluation

There are 10,000 objects, whose x(1)-values and x(2)-values

are uniformly distributed over the possible x(1)-value and x(2)-

value ranges. The number of subscriptions is 400,000 subscrip-
tions. We consider the following subscription distributions:

• Dataset #1: Uniformly pick two random numbers in the

x(1)-value range. ℓ(1) and r(1) are set to be the smaller

and larger ones, respectively. r(2) is uniformly chosen in

the x(2)-value range.

• Dataset #2: ℓ(1) is uniformly chosen in the x(1)-value

range. r(1)−ℓ(1) is set to be the minimum width that covers

1,000 objects. r(2) is uniformly chosen in the x(2)-value

range.

• Dataset #3: Same as Dataset #2, except that r(1) − ℓ(1) is

set to be the minimum width that covers 100 objects.

Figures 26(a) and 26(b) shows the average and maximum

outgoing traffic (in bytes) from the server per event update.

Tables VII and VIII show the number of calls per event.

Approaches k = 1 2 5 10 15

Paint-Dense 6.35 11.31 26.13 50.48 74.40

Paint-Sparse DS#1 5.68 9.88 23.07 45.85 68.826

Paint-Sparse DS#2 5.40 8.97 19.45 36.97 54.67

Paint-Sparse DS#3 5.51 9.36 21.12 41.13 61.07

Table VII. Number of min queries.

Approaches k = 1 2 5 10 15

Paint-Sparse DS#1 4.55 13.86 88.43 473.43 1361.90

Paint-Sparse DS#2 4.08 10.92 51.44 213.40 561.45

Paint-Sparse DS#3 4.29 12.28 70.69 360.45 1022.86

Table VIII. Number of snap queries.

APPENDIX E. PSEUDO-CODE

A. Pseudo-code for Paint-Dense

Algorithm 3: Paint-Dense(xi, y
old
i , ynewi)

begin1

if Rank-Raising Update then2

L← firstk(xi, y
new
i ,←); R← firstk(xi, y

new
i ,→) ;3

Paint-Dense-IR(i,L,R) ;4

else if Rank-Lowering Update then5

L← firstk(xi, y
old
i ,←); R← firstk(xi, y

old
i ,→) ;6

Paint-Dense-IR(i,L,R) ;7

II = conv(L ∪ R); v ← yold
i ;8

while v < ynew
i do9

hj ← miny(II, v) ;10

Paint-Dense-Exposed(hj , i,L,R) ;11

if xhj
< xi then12

L← L ∪ {xhj
} ;13

if |L| > k then14

deleteLast(L) ;15

else16

R← R ∪ {xhj
};17

if |R| > k then18

deleteLast(R);19

II = conv(L ∪ R); v ← yhj
;20

end21

Algorithm 4: Paint-Dense-IR(i, L, R)

begin1

M← {} // Rectangles that only contain affected2

subscriptions ;
a← |L|; b← |R|;3

if a+ b < k then4

M← M ∪ {Msg(xi, xi,−∞,∞, xi, yi)} ;5

else if a = 0 then6

M← M ∪ {Msg(xi, xi,−∞, rk, xi, yi)} ;7

else8

if b < k then9

M←M ∪ {Msg(xi, xi, ℓk−b,∞, xi, yi)} ;10

if a < k then11

M←M ∪ {Msg(ℓa, xi,−∞, rk−a, xi, yi)} ;12

z ← k + 1− b;13

while z ≤ a do14

M←M ∪ {Msg(ℓz−1, xi, ℓz, rk+1−z, xi, yi)} ;15

z ← z + 1 ;16

GENERATEMSG(M) // Generate messages ;17

end18

Algorithm 5: Paint-Dense-Exposed(hj, i, L, R);

begin1

M← {} // Rectangles that only contain affected2

subscriptions ;
a← |L|; b← |R|;3

if xhj
> xi then4

if a+ b < k then5

M←M ∪ {Msg([xi, xhj
], [−∞,∞], (xhj

, yhj
))}6

;

else if a = 0 then7

M←M ∪ {Msg([xi, xhj
], [−∞, rk], (xhj

, yhj
))}8

;

else9

if b < k then10

M←11

M ∪ {Msg([xi, xhj
], [ℓk−b,∞], (xhj

, yhj
))} ;

if a < k then12

M←13

M ∪ {Msg([ℓa, xhj
], [−∞, rk−a], (xhj

, yhj
))}

;

z ← k + 1− b;14

while z ≤ a do15

M←M ∪16

{Msg([ℓz−1, rk−z], [ℓz, rk+1−z], (xhj
, yhj

))}
;
z ← z + 1 ;17

else18

// The “xhj
< xi” case is symmetric to the “xhj

> xi”19

case. ;

GENERATEMSG(M) // Generate messages ;20

end21

B. Pseudo-code for 1.5-dimensional range subscriptions

Algorithm 6: UpdateList(L, R, x
(1)
i , x

(1)
hj

)

begin1

if x
(1)
hj

< x
(1)
i then2

L← L ∪ {x
(1)
hj
} ;3

if |L| > k then4

deleteLast(L) ;5

else6

R← R ∪ {x
(1)
hj
};7

if |R| > k then8

deleteLast(R);9

return (L, R);10

end11

Algorithm 7: ComputeInfluenceRectilinearPolygon(x
(1)
i ,

x
(2)
i , yi)

begin1

t← 0; ut ← x
(2)
i ;2

Lt ← firstk(x
(1)
i , x

(2)
i , yi,←);3

Rt ← firstk(x
(1)
i , x

(2)
i , yi,→) ;

IIt = conv(Lt ∪ Rt); hj ← minX(2)(IIt, x
(2)
i , yi) ;4

while hj 6= ∅ do5

(Lt+1,Rt+1)← UpdateList(Lt,Rt, x
(1)
i , x

(1)
hj

);6

IIt+1 = conv(Lt+1 ∪ Rt+1); ut+1 ← x
(2)
hj

;7

hj ← minx(2)(IIt+1, ut+1, y
new
i) ;8

t← t+ 1;9

return (Lz,Rz, uz, IIz)
t
z=0;10

end11

Algorithm 8: Paint-Dense-IR(i, L, R, x
(2)
min, x

(2)
max)

begin1

M← Paint-Dense-IR(i,L,R) ;2

M′ ← {};3

foreach Msg(ℓI , rI , ℓO, rO, x
(1)
i , yi) ∈M do4

M
′ ←5

M′ ∪ {Msg(ℓI , rI , x
(2)
min, ℓO, rO, x

(2)
max, x

(1)
i , x

(2)
i , yi)}

return M
′;6

end7

Algorithm 9: Paint-Dense-Exposed(hj, i, L, R, x
(2)
min,

x
(2)
max);

begin1

M← Paint-Dense-Exposed(hj , i,L,R) ;2

M′ ← {};3

foreach Msg(ℓI , rI , ℓO, rO, x
(1)
hj

, yhj
) ∈M do4

M′ ←5

M
′ ∪ {Msg(ℓI , rI , x

(2)
min, ℓO, rO, x

(2)
max, x

(1)
hj

, x
(2)
hj

, yhj
)}

return M′;6

end7

Algorithm 10: Merge(M, M′)

begin1

M
′′ = ∅;2

foreach Msg ∈M do3

Msg′ ← getMergable(Msg,M′);4

if Msg′ 6= ∅ then5

M
′′ ←M

′′ ∪ {MEB(Msg,Msg′)};6

M
′ ← M

′\{Msg′};7

else8

GENERATEMSG(Msg) ;9

return M
′ ∪M

′′;10

end11

begin1

if Rank-Raising Update then2

(Lz,Rz, uz)
t
z=0 ← ComputeInfluenceRectilinearPolygon(x

(1)
i , x

(2)
i , ynew

i) ut+1 ←∞;3

for z ← 0 to t do4

M
′ ← Paint-Dense-IR(i,Lz,Rz, uz, uz+1) ;5

M← Merge(M,M′) ;6

GENERATEMSG(M) ;7

else if Rank-Lowering Update then8

(Lz,Rz, uz)
t
z=0 ← ComputeInfluenceRectilinearPolygon(x

(1)
i , x

(2)
i , yold

i);9

u−1 ← −∞; ut+1 ←∞;10

for z ← 0 to t do11

IIz = conv(Lz ∪ Rz); M
′ ← Paint-Dense-IR(i,Lz,Rz, uz, uz+1) ;12

M← Merge(M,M′) ;13

GENERATEMSG(M) ;14

v ← yold
i ;15

while v < ynew
i do16

M = ∅;17

for z ← 0 to t do18

if hz = ∅ or x
(1)
hz
6∈ IIz then19

hz ← miny(IIz, uz, uz+1) ;20

hj ← miny{hz} ; s← j;21

if x
(2)
hj

> u0 then22

M
′ ← Paint-Dense-Exposed(hj , i,Ls,Rs, x

(2)
hj

, us+1);23

M← Merge(M,M′) ;24

InsertList(s+ 1,Ls,Rs, x
(1)
hj

);25

s← s+ 1;26

else27

M
′ ← Paint-Dense-Exposed(hj , i,Ls,Rs, u0, us+1);28

M← Merge(M,M′) ;29

(Ls,Rs)← UpdateList(Ls,Rs, x
(1)
i , x

(1)
hj

);30

s← s+ 1;31

while s ≤ t and (x
(1)
i > x

(1)
hj

> ℓsk or x
(1)
i < x

(1)
hj

< rsk) do32

M
′ ← Paint-Dense-Exposed(hj , i,Ls,Rs, us, us+1) M← Merge(M,M′) ;33

(Ls,Rs)← UpdateList(Ls,Rs, x
(1)
i , x

(1)
hj

);34

if Rs−1 = Rs and Ls−1 = Ls then35

if hs−1 = ∅ then36

if s > j + 2 then hs−1 = hs37

else38

if hs 6= ∅ and yhs < yhs−1 then39

hs−1 = hs40

Remove(Ls,Rs, us);41

else42

s← s+ 1;43

GENERATEMSG(M) ;44

v ← yhj
;45

end46

Algorithm 11. Paint-Dense(x
(1)
i , x

(2)
i , yoldi , ynewi)

