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ABSTRACT
Wireless sensor networks have created new opportunities for data
collection in a variety of scenarios, such as environmental and in-
dustrial, where we expect data to be temporally and spatially cor-
related. Researchers may want to continuously collect all sensor
data from the network for later analysis. Suppression, both tempo-
ral and spatial, provides opportunities for reducing the energy cost
of sensor data collection. We demonstrate how both types can be
combined for maximal benefit. We frame the problem as one of
monitoring node and edge constraints. A monitored node triggers
a report if its value changes. A monitored edge triggers a report
if the difference between its nodes’ values changes. The set of re-
ports collected at the base station is used to derive all node values.
We fully exploit the potential of this global inference in our algo-
rithm, CONCH, short for constraint chaining. Constraint chaining
builds a network of constraints that are maintained locally, but al-
low a global view of values to be maintained with minimal cost.
Network failure complicates the use of suppression, since either
causes an absence of reports. We add enhancements to CONCH
to build in redundant constraints and provide a method to interpret
the resulting reports in case of uncertainty. Using simulation we
experimentally evaluate CONCH’s effectiveness against competing
schemes in a number of interesting scenarios.

1 Introduction
Wireless sensor networks have the potential to enable data collec-
tion on an unprecedented scale. They have a range of scientific, in-
dustrial, and military applications. For example, our collaborators
in environmental science have deployed a sensor network in a for-
est to collect light, temperature, soil moisture, and sap flow data to
understand how environmental changes influence the growth, sur-
vival, and reproduction of trees. The key challenge in this project
is to collect data from the network efficiently and continuously for
analysis. A straightforward approach is to instruct all nodes in the
sensor network to send their readings at regular intervals to a base
station. Periodic reporting, however, is at odds with one of the
major concerns for wireless sensor networks: energy. Nodes have
∗The authors are supported by NSF CAREER award IIS-0238386,
NSF grant CNS-0540347, and an IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

limited battery life, and radio transmission is the primary consumer
of energy. Excessive transmission quickly depletes batteries, ren-
dering the nodes useless.

If we can describe the data to be collected as a declarative query,
we can “push” the query down into the sensor network—an ap-
proach pioneered by systems such as Cougar and TinyDB [19, 10].
Given the query, we can perform filtering and aggregation in the
network to reduce the amount of data transmitted to the base sta-
tion. For example, if we only need to obtain the highest temperature
reading from the network, only one reading need reach the base sta-
tion; other readings can be dropped on their way to the base station
as soon as they encounter another reading that is higher. In many
situations, however, users may want to collect all sensor readings,
without any filtering or aggregation, to produce a dataset that will
support offline, ad hoc analysis later. This situation is especially
common in scientific applications of sensor networks, where anal-
ysis of data is often exploratory in nature. For example, our col-
laborators in environmental science would like to collect all tem-
perature readings (up to a certain precision) in an area over a time,
which can then be used offline to develop and evaluate sophisti-
cated statistical models of tree growth.

There are several opportunities for reducing the cost of monitor-
ing and reporting a group of sensor readings, independent of query
type. First, readings often change slowly over time and do not usu-
ally deviate from their expected values. For example, in industrial
applications, a change in some monitored quantity may be a warn-
ing of impending failure and occurs rarely. Second, readings are
often spatially correlated. In habitat monitoring, if one sound sen-
sor detects a loud cry from an animal, its neighboring sensors likely
hear the same sound. In general, many types of sensor data exhibit
strong correlation in both space and time. For example, if one sen-
sor detects high soil moisture due to precipitation, sensors in neigh-
boring areas with similar soil composition and elevation likely ob-
serve similar moisture readings; furthermore, soil moisture usually
stays at a saturated level during precipitation, and tapers off to a
normal level afterward. A primary goal of this paper is to investi-
gate how to make continuous monitoring in sensor networks more
energy-efficient by exploiting these opportunities.

We use the term suppression to refer generally to query-
independent techniques for reducing the cost of reporting changes
in sensor values. We outline several basic techniques below, and
motivate the need for developing better ones.

Temporal Suppression In this scheme, a node does not transmit
a value if it has not changed since last reported. The base station,
in turn, assumes any unreported values remain unchanged. This
scheme is effective when values seldom change. On the other hand,
when large-scale change occurs in an area, all nodes must report to
the base station, incurring a high cost.



Figure 1: Moving front of a phenomenon.

Spatial Suppression In the basic version of this scheme, a node
suppresses its value if it is identical to those of its neighboring
nodes. Meng et al. [12] suggests a more effective scheme based
on averages, in which all nodes attempt to report their values at
different time slots during a logical timestep. Nodes overhear re-
ports from their neighbors. When a node’s slot comes up, it first
computes the average of all values overheard so far. If its value
equals this average, its report is suppressed. The base station later
fills in missing values with the average of the neighboring values.
This approach does introduce some complications. To accurately
derive a node’s value, the base station must know which neighbors
were averaged when suppression was triggered; the average of this
subset may be different from the average of all neighbors. Resolv-
ing this discrepancy requires a global reporting order of all nodes,
maintained by the base station. Holding to a global order in the
presence of node clock skew is likely expensive for sensors. We ig-
nore this overhead, however, for the sake of comparison with more
advanced schemes.

Spatio-Temporal Suppression The next step is to combine the ad-
vantages of both spatial and temporal suppression techniques. One
idea is to suppress nodes if they qualify for either type of suppres-
sion. This idea is flawed, however, because it is impossible for the
base station to correctly derive unreported values. The “or”ing of
the schemes creates ambiguity. The base station does not know if
a missing value is temporally or spatially suppressed; if the val-
ues derived by assuming each case turn out to be different, there
is no way to determine the correct value. Another possibility is to
“and” the schemes, suppressing only if a node qualifies for both.
This approach, however, would be less effective than using only
one type of suppression. Fewer nodes can be suppressed both tem-
porally and spatially than can be suppressed one way or the other.
Therefore, “and”ing the schemes would only hurt efficiency.

Nevertheless, there is potential in combined suppression. If val-
ues do not change, they should not be reported. In addition, if
they do change, but the relationship between neighboring nodes
remain the same, we may suppress some reports. Consider the net-
work fragment shown in Figure 1. In one timestep, a physical phe-
nomenon causes a band of nodes to all rise in value (shift from
white to black). Discretized environmental readings, e.g., temper-
ature or moisture, often exhibit this type of correlated behavior,
where values in the interior of the band change, but maintain the
same relative relationships with their neighbors. We want to sup-
press these changes. Ideally, only one node on each boundary (old
and new) of the band needs to report the change that is consistent
within the band. In contrast, with pure temporal suppression, all
nodes in the band must report. With pure spatial suppression, all
nodes on the band boundary must report; for every local cluster of
nodes within the band, at least one node must report.

Our Contributions As we have illustrated, it is not obvious how
to design an effective spatio-temporal suppression policy. Our pri-
mary goal, therefore, is to develop a monitoring algorithm that fully
exploits the potential of spatio-temporal suppression in minimizing
the energy cost. An additional challenge we address is handling of

failures, which can have particularly bad effects on data quality of
highly efficient suppression techniques. If the base station does not
hear from a node, there may be no change to report, but it could be
the case that an update message was lost. In the worst case, a single
lost update message can affect the data quality in a large area; for
example, with ideal spatio-temporal suppression for the scenario in
Figure 1, if the update message from the boundary node is lost in
transmission, the base station will miss the new values in the entire
band. We investigate how to augment our monitoring algorithm
in the presence of failures, which are common in wireless sensor
networks deployments. Specifically, our contributions in this paper
include the following:
• We present a spatio-temporal suppression technique called

CONCH, short for constraint chaining. By monitoring a com-
bination of individual values (as node constraints) and relation-
ships between neighboring values (as edge constraints), CONCH
exploits spatio-temporal correlations in data much more effec-
tively than previous suppression schemes. CONCH “chains” to-
gether locally monitored node and edge constraints into a net-
work of constraints spanning all nodes. This constraint network
allows us to use a change detected locally at one point in the net-
work to globally infer values at nodes around the network, with-
out incurring the cost of communicating between these nodes.
For example, with these features, CONCH is able to achieve
ideal spatio-temporal suppression for the scenario in Figure 1.
• We develop cost-based optimization techniques for constructing

CONCH monitoring plans aimed at minimizing the total energy
consumption in the sensor network.
• To cope with failures in the sensor network, we propose to aug-

ment a minimum-cost CONCH monitoring plan with redundancy.
We present a framework for removing data inconsistency caused
by failures and for recovering correct values. We provide a com-
putationally feasible method for recovering the most likely cor-
rect values under simplified value and failure models.
• We experimentally evaluate CONCH against other monitoring

algorithms using simulation, and demonstrate its advantages (of-
ten an order of magnitude reduction in energy costs) for a num-
ber of representative scenarios. Our experiments also show the
effectiveness of our failure-handling techniques.

2 Related Work
Suppression A number of papers support monitoring queries us-
ing suppression. One approach that closely compares to ours is
event contour [12]. This method uses temporal suppression to only
report values when they change by a significant amount, and ap-
plies a neighborhood approach to invoke spatial suppression as well.
When a node attempts to report its value to its parent node, it must
compete with neighboring nodes that also wish to send. While it
waits for a chance, the node overhears the values transmitted by
its neighbors. If these values average to within some threshold of
the node’s, it suppresses its value. Therefore, if a neighborhood
contains nodes all with similar values, not all will be sent. Never-
theless, we are left with a number of problems. First, we can never
suppress all readings in an area, even if all are the same. Second,
if a pair of nodes have different values, but are highly correlated
such that they always move together, we will always report both,
even though one is sufficient to derive the other. Finally, the spatial
component suffers from the flaw mentioned in Section 1 where the
base station does not know on which values suppression is based.

Solis and Obrazcka [17] present a solution for continuously main-
taining isoline maps. They recognize the need to combine spatial
and temporal suppression. Their algorithm is very similar to our



precursor NEIGHBORHOOD scheme presented in Section 3. Un-
like our scheme, though, they report whenever a difference between
neighbors is detected; they miss out on the chance to suppress val-
ues that differ, but whose relative difference remains consistent.
Both suffer from redundant reporting, as we describe in Section 3.1.
CONCH resolves this issue.

Chintalapudi and Govindan [1] address the problem of edge de-
tection and returning enough data so the root can construct an ac-
curate depiction of the boundaries of some phenomenon. Nodes
can individually determine if they reside within the phenomenon,
but must consult other nodes within some radius to determine if
they are on the edge of it (i.e., if there is a neighbor not registering
the phenomenon). If nodes contact too large a neighborhood, the
scheme risks sending redundant data to the root. If nodes contact
too small a neighborhood, the scheme risks missing some data and
mis-setting the boundary.

Temporal suppression fits naturally with continuous queries. One
example, [16], temporally suppresses nodes from reporting their
values if they have not changed by more than some percent since
previously reported. This bounded approximation supports con-
tinuous aggregate queries with bounded error. Less is at stake in
suppression for aggregates, whose semantics naturally imply com-
pression, than monitoring all values, where as many as all values
are potentially returned.
Spatial Suppression with Representative Nodes A managed ap-
proach to avoid sending correlated data to the root is to gather such
data at intermediate points [13, 14]. The main observation is if a
set of data is highly correlated, rather than sending values to the
root by the shortest route, it is beneficial to send them to a mu-
tual gathering point. At this point the correlation is discovered, and
only non-redundant values are sent on to the root. This technique
is essentially one of spatial suppression. Because these approaches
are tailored to ad hoc queries, neither considers temporal suppres-
sion. In [13] nodes are organized into clusters; all nodes in a cluster
send their values to a cluster head node; suppression happens at the
cluster head and also en route. The other approach, [14], declares
regions of interest and arranges for nodes within a region to send
to a common border node, where suppression can occur. In both
cases, opportunities to suppress across clusters/regions are not ex-
ploited. Furthermore, the cluster shapes are fixed based on network
topology and are not tailored to actual correlation patterns. The re-
gions of interest are set by the root and the cost for adjusting the
regions is significant. The rigidity of these may lead to inefficiency.
These are issues we solve with CONCH, whose planning exploits
correlation patterns, and can adapt to changes.

Chu et al. propose the Ken [2] framework for suppression in con-
tinuous monitoring. It uses a joint probability model to suppress as
much data as possible from reaching the root, while still allowing
the root to derive suppressed values from those reported with some
level of certainty. They propose a disjoint-clique approach to divide
nodes into groups and then build models for each of these. Tempo-
ral suppression cannot be fully achieved since all values are sent to
clique roots each round. There is a trade-off between temporal and
spatial suppression. The larger the cliques, the more spatial can be
exploited, but the further values must be sent each round.

Another category of work chooses representative nodes from
neighborhoods to exploit spatially correlated data. Examples are
snapshot queries [9] and connected k-coverage problem [20]. These
choose a subset of nodes to respond to queries, where each cho-
sen node stands in for neighboring nodes within some error. This
work leverages correlation as we do, and implies spatial suppres-
sion when they allow some nodes to ignore queries. The use of
coverage nodes means results are approximate, although with some

error guarantee. Therefore, regular checks must be done between
nodes and their representatives. This step is not discussed in [20].
In the case of [9], these look similar to our “update” messages,
though theirs are sent with regular frequency, while ours are trig-
gered by value change. The use of coverage nodes ensures some
number of nodes respond to every query. Both approaches require
every node be represented by a node within communication dis-
tance. Therefore, this approach can never achieve our goal of near
or total suppression. Finally, these schemes are not tailored to con-
tinuous queries, so do not address temporal suppression.

A common theme among the preceding approaches is that certain
nodes become responsible for reporting for their regions and must
report in the event of change. CONCH, as we will show, differs from
these because it uses constraint chaining. It is possible for a region
to experience change but have no node from that region report to
the root. Such changes can be inferred using change reports from
distant nodes, or from changes at the root itself.
Model-Based Suppression We have already seen the use of mod-
els for spatial suppression in [2]. An example of temporal suppres-
sion using models rather than values is [8]. They use Kalman Fil-
ters to suppress node data as long as it fits the current model. This
work is orthogonal to ours, and exactly the type of sophisticated
modeling we think can be plugged into CONCH to direct suppres-
sion. A strategy in [6] is to buffer large amounts of measurements
at each node. Rather than transmit the buffer contents, they iden-
tify and transmit a base signal of a few parameters, which can be
used to estimate all measurements. This approach is again orthog-
onal to ours; instead of monitoring actual values, we can apply our
techniques to monitor the parameters of the base signal.
Failure The more effectively suppression is exploited, the more
damage can be done by misinterpreting a failed message as a sup-
pressed message. Failure handling has been approached by use of
redundancy in the context of routing and ad hoc querying. For ex-
ample, [11] divides routing into graph and tree portions, where data
is initially sent up multiple paths to protect against failure. The
higher the risk of failure, the larger the graph portion. Failure is
not as well studied in association with suppression. TiNA [16] uses
heartbeat message to check if nodes that have been suppressing for
some time are still alive. Unless these are sent with high frequency,
however, there is a risk that failure will go undetected for a long
time and affect many rounds of results. On the other hand, sending
them with high frequency defeats the purpose of suppression.

3 Preliminaries
Sensor Network A sensor network consists of a set N of n fixed-
location nodes {ui | 1 ≤ i ≤ n}, each measuring a value vi.
One node serving as the base station is a full-scale computer with
no energy limitations. The base station knows all nodes and their
locations, and is responsible for planning queries and monitoring
tasks and extracting and reconstructing values from the network.
A communication edge eij exists between any pair of nodes ui

and uj within communication distance. A communication network
utilizing these edges connects all nodes to the base station, either
directly or through other nodes. Any existing protocol [7, 18] can
be used for routing.

The primary use of energy in sensor nodes is for radio communi-
cation. The cost of transmitting data dwarfs the cost of doing com-
putation [15]. Therefore, we optimize energy efficiency by mini-
mizing the number and size of messages sent through the network,
and evaluate all algorithms on this metric. The total amount of en-
ergy spent in sending a message with x bytes of content is given
by σs + δsx, where σs and δs represent the per-message and per-



byte sending costs, respectively. As an example, typical values for
MICA2 motes [5] are σs = .645mJ and δs = .0144mJ/byte. Re-
ceiving cost is defined analogously, with typical values of σr and
δr roughly 60% less than their sending counterparts.

For a continuous query or monitoring task, the base station ini-
tially disseminates a query or monitoring plan, consisting of in-
structions to be carried out at runtime by individual nodes, into the
network. Since this dissemination occurs only once and its cost is
amortized over the lifetime of the task, we ignore it in cost-based
optimization. We also permit the plan to be updated at runtime, but
infrequently so that it has overall negligible effect on the amortized
energy consumption.
Problem Statement In each timestep, each node ui produces a
new value for vi. Our goal is to collect, at the base station, all val-
ues produced in every timestep. For simplicity of discussion, we
assume that these values are discretized according to the precision
requirement of the data collection task. For example, if we wish
to collect temperature at precision of 1 degree Celsius, each tem-
perature reading can be discretized to an integer, providing an error
bound of ±0.5 degree Celsius.

Note that our “values” are much more general than just the sen-
sor readings; they can be quantities derived from readings or even
a history of readings through model fitting. This generalization
makes our techniques applicable in conjunction with sophisticated
model-based compression schemes such as [8, 2]. As a very sim-
ple example, suppose a temperature reading x can be predicted by a
function f(t, p) with reasonable accuracy, where t is the time of the
day and p is a model parameter that intuitively captures the “base-
line” temperature for the day independent of t. Instead of tracking
x as a “value” in our approach, we can track two “values”: p and
the quantity e = x − f(t, p) (predication error). Model parame-
ter p changes much less than x, and if the model is accurate, the
e should remain 0 most of the time (with appropriate discretiza-
tion). Hence, monitoring p and e should be much cheaper than
monitoring x, which can be reconstructed as f(t, p)+ e. Our tech-
niques then help with monitoring of p and e, by further exploiting
the fact that they do not change often, and their values at neigh-
boring nodes are spatially correlated —p’s are naturally correlated
in space, while some neighboring e’s may change together due to
movement of canopy shades.

3.1 A First Cut: NEIGHBORHOOD
Before delving into CONCH, we first present an algorithm called
NEIGHBORHOOD that serves two purposes. First, it introduces an
idea for combining spatial and temporal suppression that will also
be used by CONCH. Second, by analyzing its shortcomings, we
gain insights that lead us to the development of CONCH. We call
the set of nodes within communication distance of ui the neigh-
borhood of ui, denoted Ni. Note that ui ∈ Nj implies uj ∈ Ni,
assuming communication is always bidirectional. The main idea of
NEIGHBORHOOD is for each node ui to maintain dij , the differ-
ence in value between itself and each node uj ∈ Ni.

In every timestep, each ui broadcasts its value vnew

i to all nodes
in Ni only if its value has changed since the value vold

i from the pre-
vious timestep—as in temporal suppression. Then, ui updates dij

for each neighbor uj as follows. If ui receives a broadcast message
from uj with updated value vnew

j , ui updates dij to vnew

i − vnew

j ;
if ui has not received any broadcast message from uj by the end of
the timestep, ui infers that vj remains unchanged, and updates dij

to dij−vold

i +vnew

i . At the end of the timestep, for each dij that has
been updated to a different value in this timestep, ui sends dij to
the base station if i > j. As an optimization, these updates can be
grouped into one message. In essence, dij is a spatial relationship

(a)

u1 u2 u3 u4

u5 u6 u7 u8
(b)

u1 u2 u3 u4

u5 u6 u7 u8

Figure 2: Edge monitoring in NEIGHBORHOOD (a) vs.
node/edge monitoring in CONCH (b).

suppressed temporally.
In NEIGHBORHOOD, the base station knows the difference (dij )

in value across every communication edge at all times. Thus, NEIGH-
BORHOOD is an edge monitoring scheme. Also, the value at the
base station is always known (if the base station does not monitor
any value, it simply monitors a “dummy” value of zero). From this
value, it is easy to reconstruct all values in the network in one pass
with a traversal of the network topology. During this traversal, sup-
pose we have already reconstructed vi; then for each neighbor uj

of ui, we can reconstruct vj as vi − dij . Note this traversal is done
completely at the base station with its knowledge of the network
topology, without any communication to the real network.

NEIGHBORHOOD improves over the suppression schemes dis-
cussed in Section 1. Once again, suppose two neighbors share the
same value; if both values remain constant or rise in tandem, we
can suppress reporting of their difference to the base station. More-
over, even if two neighbors have different values that both change,
as long as the difference in value remains constant across changes,
we can suppress reporting.

Shortcomings While NEIGHBORHOOD combines spatial and tem-
poral suppression effectively, it still has important flaws. These are
best seen with examples. Say we start with a collection of 8 nodes
all with the same value, vl, and in the next timestep, the 4 nodes
above jump to a higher value, vh, as depicted in Figure 2(a). A
horizontal axis shows the split in values. The dotted lines indicate
neighbor relationships between pairs of nodes. When the 4 nodes
above rise in value, the value differences along all edges across the
split (colored in black) change. For each such edge, NEIGHBOR-
HOOD must update the base station. Obviously, there are more up-
dates than necessary. For instance, the base station should be able
to infer the new value at node u1 from just one monitored edge,
say e15, but the other edge, e16, is also reported. This problem is
inherent in NEIGHBORHOOD because it monitors all communica-
tion edges, most of which are redundant; for example, d13 should
always be the same as d12+d23. This redundancy causes lots of un-
necessary update traffic, a problem that we shall address in CONCH
with more judicious choice of edges to monitor. Although there are
lots of value changes in the network in this example, the overall
effect can be described succinctly: all nodes above the axis move
to vh. With CONCH, we will be able to use one short message to
capture this overall effect.

Another shortcoming of NEIGHBORHOOD arises in its handling
of “outlier” nodes whose values simply change haphazardly with-
out any spatio-temporal correlation. Suppose u8 turns out to be
such a node in Figure 2(a). NEIGHBORHOOD monitors all edges
incident to u8, but v8 changes haphazardly, causing updates to all
these edges in every timestep. CONCH will need to be able to iden-
tify such outliers and protect the rest of the monitoring plan from
being affected by them.

4 Min-Cost CONCH
We now present CONCH, the main contribution of this paper. The
crux of CONCH is that we can provide effective spatio-temporal
suppression using a minimum spanning forest covering all nodes in



the sensor network; the roots and edges of this forest correspond to
monitored constraints. Like NEIGHBORHOOD, CONCH uses edge
monitoring to exploit spatio-temporal correlations in data, and re-
lies on “chaining” of value differences along monitored edges to
recover node values. The key observation here is, to be able to re-
construct all values in the network, we simply need to monitor all
edges in a spanning tree, covering all nodes. For the purpose of re-
constructing node values, any spanning tree suffices, but we should
choose one that is the cheapest to monitor; intuitively, we prefer
those edges connecting values that tend to change in tandem. A
further improvement over NEIGHBORHOOD is that CONCH allows
nodes to be directly monitored (using just temporal suppression).
By relaxing the requirement that every value must be monitored in
conjunction with a neighbor, CONCH makes it easier to separate
uncorrelated areas of values and, in particular, to isolate outliers
(as discussed at the end of Section 3.1). This flexibility implies a
spanning forest of trees, whose roots are directly monitored.

As an example of how CONCH works, consider the same sce-
nario as in Section 3.1. Figure 2(b) illustrates how CONCH might
choose to monitor this network. The spanning forest consists of one
skinny tree (in fact just a single path) that connects the top 4 nodes
with 3 left-most bottom ones, plus one singleton-tree with just u8.
The first thing to notice versus NEIGHBORHOOD is that far fewer
edges are monitored. The second is that when the top nodes change
to vh, only one edge (e15) observes a change in value difference, so
only one update message is sent to the base station. Because none
of the edges between black nodes were reported, we know all of
those edges must still have the same value; if u1 now has value vh,
then so do u2, u3, and u4. Finally, note CONCH directly monitors
the outlier, u8, and does not monitor any edges incident to u8, be-
cause there is no benefit, and only overhead cost, in monitoring u8

in conjunction with an uncorrelated value.
This rest of this section starts with a formal description of a

CONCH plan and discusses how the plan is carried out at runtime
to perform lossless data collection, assuming no failure, from the
sensor network (Section 5 addresses failure). We then discuss how
to obtain a min-cost CONCH plan, i.e., one that is expected to spend
the least amount of energy over time.

4.1 CONCH Plan
Suppose the sensor network consists of a set of nodes N and a set
of communication edges E. Formally, a CONCH plan is specified
by a set of nodes Nm ⊆ N (called the monitored nodes), a set
of (undirected) edges Em ⊆ E (called the monitored edges), and
a reporter assignment function rep : Em → N that maps each
monitored edge eij ∈ Em to one of ui and uj . We call rep(e)
the reporter of e, and the other node incident to e the updater of e.
Nothing prevents a node from serving either role on behalf of any
of its incident edges, but each node serves only one role per edge.

A valid CONCH plan satisfies the following requirements: (1) the
base station is in Nm; (2) every node u ∈ N is either in Nm (di-
rectly monitored), or there exists a path from some node in Nm

to u (indirectly monitored), where every edge on this path is in
Em. This section focuses on minimal CONCH plans, valid plans
for which it is impossible to remove some node from Nm or some
edge from Em while still maintaining the validity of the plan. It
is easy to see that we can construct a minimal CONCH plan from a
spanning forest of the sensor network.

The potential savings of a minimal CONCH plan over NEIGH-
BORHOOD can be seen in part by calculating the number of quanti-
ties monitored. A minimal CONCH plan, by definition, contains no
more than n monitored quantities. In contrast, the number of edges
monitored by NEIGHBORHOOD is n/2 multiplied by the average

number of neighbors per node, which is likely much higher. The
potential savings comes from the flexibility of requiring far fewer
monitored quantities and then choosing them carefully.

Intuitively, CONCH monitors a network of constraints. Each
node in Nm maintains a node constraint, reporting to the base sta-
tion whenever its value changes. Each edge in Em is an edge con-
straint, jointly maintained by a reporter and an updater: the up-
dater notifies the reporter whenever the updater’s value changes,
and the reporter notifies the base station whenever the value dif-
ference along the edge changes. The chaining of node and edge
constraints allows the base station to recover all values in the net-
work. We next describe the operation of CONCH in detail.

Start-Up Phase Once a CONCH plan has been constructed at the
base station, we disseminate it into the network. Each node ui ∈ N
builds two lists: ERi, the list of edges for which ui is the reporter;
and EUi, the list of edges for which ui is the updater. At timestep
0, to initialize state, ui carries out the following steps. If EUi is
not empty, ui broadcasts its value vi to its neighbors (specifically
for reporters of edges in EUi). Meanwhile, for each edge eij ∈
ERi, ui listens for a broadcast message from uj (the updater of
eij ) containing its value vj ; ui then computes the edge difference
dij = vi − vj and records it. Finally, ui sends a message to the
base station containing all its recorded edge differences, together
with its own value vi (if ui ∈ Nm). At the end of initialization,
the base station knows the values of all directly monitored nodes,
as well as value differences along all monitored edges.

Continual Phase The continual phase is carried out by all nodes
simultaneously at every timestep, without additional intervention
by the base station. The frequency of timesteps is a user-controlled
parameter. Note the proper choice of this parameter depends on
many factors beyond the scope of this paper, such as application-
specific measures of information utility, and the amount of time
required to finish all communication in each timestep; hence, we
will not elaborate on this point further in this paper.

At each timestep, each node ui obtains its new value vnew

i and
compares it with the old value vold

i from the previous timestep.
If the two differ, ui broadcasts vnew

i to the reporters of edges in
EUi (if EUi 6= ∅), and also sends it to the base station (if ui is
directly monitored). For each edge eij ∈ ERi, ui updates dij as
follows. If ui receives a broadcast message from uj with updated
value vnew

j , ui updates dij to vnew

i − vnew

j ; if ui has not received
a broadcast message from uj by the end of the timestep, ui infers
that vj remains unchanged, and updates dij to dij − vold

i + vnew

i .
At the end of the timestep, for each dij that has been updated to
a different value in this timestep, ui sends dij to the base station.
As an optimization, all updates from ui to the root can be grouped
into one message. The base station receives update messages and
uses them to keep its collection of monitored nodes values and edge
differences up-to-date; if a quantity is not updated in a timestep, it
is assumed to have remained the same since the previous timestep.

Value Reconstruction The base station can reconstruct the value
of any node at any time. Consider node ui. With a valid CONCH
plan, one of the following must be true: (1) ui is directly monitored;
(2) there is a path from some directly monitored node uj0 to ui,
and each edge on the path is monitored. In the first case, the base
station should know the value at ui directly. In the second case, the
base station knows the value at uj0 as well as the value differences
dj0j1 , dj1j2 , . . . , djmi along the edges on the path to ui. Clearly,
the value of ui can be computed by

vj0 −
“

X

0≤k<m

djkjk+1

”

− djmi.



Note that if djk+1jk
is tracked instead of djkjk+1

, the latter is sim-
ply given by −djk+1jk

.
In fact, the base station can reconstruct all values efficiently in

one pass using a topological sort of the constraint network starting
from the directly monitored node values.

4.2 Cost-Based Construction of CONCH Plan
While any spanning forest can serve as a minimal and valid CONCH
plan, it may not necessarily be the best choice in terms of minimiz-
ing energy cost. In particular, it is very important to make a clear
distinction up front between the CONCH forest (for monitoring) and
the routing tree of the sensor network rooted at the base station (for
communication). In a routing tree the goal might be for messages
to travel from a node to the base station in as few hops as possi-
ble. It is quite likely, however, that some edges in the routing tree
connect nodes whose values happen to be uncorrelated; such edges
would not be good candidates for monitoring. This observation is
confirmed by experiments in Section 6. It is also possible for a
CONCH forest to be shaped in a way that would be horrible for the
purpose of routing, such as the example in Figure 2(b). There is
no problem here: CONCH edges are not used for routing; updates
are still sent to the base station following shortest paths, or using
whatever protocol is supported by the underlying network layer.

In this section, we discuss how to construct a CONCH plan that
minimizes the energy cost of monitoring. Intuitively, we want to
monitor node values and edge differences that change less, or more
precisely, that are cheaper to maintain. We solve the optimization
problem in two steps. The first step constructs a min-cost spanning
forest, with roots corresponding to monitored nodes and edges cor-
responding to monitored edges. Here, “cost” is defined as the ex-
pected energy cost of monitoring, which is calculated from statis-
tics of past value changes and estimated change reporting costs,
including communication reliability. The second steps takes the
spanning forest as input, and further decides the roles of reporter
and updater for each monitored edge. This time the optimization
uses a more detailed communication model, which, for example,
accounts for the possibility of combining multiple messages to save
per-message overhead. We now discuss these two steps in more de-
tail below.
Step 1: Constructing a Min-Cost CONCH Forest We solve this
optimization problem by reformulating it as a problem of finding a
min-cost spanning tree (MST) of a graph, where the cost is given
by the sum of edge weights in the tree. The resulting MST problem
can be solved using standard techniques such as Prim’s or Kruskal’s
algorithms [4].

We start with a graph with all nodes N and communication edges
E in the sensor network. We weigh each edge eij according to the
estimated cost of reporting its changes to the base station. This
estimate is given by freq(dij) × dist(eij), where freq(dij) is the
frequency with which dij changes, and dist(eij) is the number of
hops in the shortest path (in a routing tree) from eij to the base sta-
tion. We can obtain dist(eij) readily from the network topology;
the exact distance is difficult to know outside the routing protocol,
and may change over time, but an estimate based on a static topol-
ogy will likely serve for the purpose of optimization. We defer the
discussion of how to obtain freq(dij) to later in this section. It is
also possible to integrate reliability into weight calculation, which
we do in Section 5.

For each node ui, we also add an “imaginary” edge connecting
it to the base station (just for the purpose of solving this optimiza-
tion problem), intuitively for capturing the possibility of monitor-
ing ui directly. This imaginary edge is assigned a weight freq(vi)×
dist(ui), where freq(vi) is the frequency with which vi changes,

and dist(ui) is the distance from ui to the base station in hops.
We then find the MST of the constructed graph using standard

algorithms such as Kruskal’s in time O(|E| log |E|). To convert
the result MST into a CONCH forest, we simply make all nodes in-
cident to the imaginary edges in the MST directly monitored nodes;
all non-imaginary edges in the MST become monitored edges.
Step 2: Assigning Updaters and Reporters Intuitively, a good
assignment should consider the following optimization opportuni-
ties. Consider a monitored edge eij . First, if vi changes less fre-
quently than vj , then it might be better to make ui the updater,
because it requires fewer broadcasts to track the edge difference
than the other way around. Second, if ui is closer to the base sta-
tion than uj , then making ui the reporter might be better because of
cheaper reporting. Third, if ui is incident to more monitored edges
than uj , then making ui the updater might be better because it can
service more edges with just a single broadcast message. Because
of the complex interactions among these opportunities and role as-
signment, it is rather difficult to gauge the quality of heuristic role
assignment. Instead, we formulate optimal role assignment as a
linear program, and we can guarantee that the assignment will be a
factor of 2 within the optimum.

To guide optimization, we again use past observations to ap-
proximate future behaviors. In particular, we use a sequence S
of snapshots of the sensor network previously observed at consecu-
tive timesteps, where each snapshot contains all node values in the
same timestep. Again, we defer the discussion of how to obtain S
to later in this section. From S we can easily derive the follow-
ing information: change(i, t) means that the value at ui changed
in timestep t; change(i, j, t) means that the value difference along
eij changed in timestep t; freq(u) is the total number of times that
the value at node u changed in S; freq(e) is the total number of
times that the difference along edge e changed in S .

As shorthand notation, let anc(i, j) denote the condition that ui

is a node on the path from uj to the base station (including uj it-
self); let inc(j, e) denote the condition that node uj is incident to
edge e. Given a CONCH forest with monitored nodes Nm and mon-
itored edges Em, the mixed-integer program assigns the following
variables: rei is set to 1 if ui is assigned as reporter for edge e, and
0 otherwise; xit is set to 1 if ui is used for transmitting a message
to the base station in timestep t, and 0 otherwise; and yit is set to 1
if ui must broadcast an update message at timestep t, and 0 other-
wise. The program minimizes:

(σs + σr)
P

t

P

i
xit +

(δs + δr)
P

e∈Em

P

inc(i,e) dist(i)freq(e)rei +

(σs + δs)
P

t

P

i
yit +

(σr + δr)
P

e∈Em

P

inc(i,e) freq(vi)(1− rei)
subject to:

∀e ∈ Em, ui ∈ N, uj ∈ N s.t. inc(i, e), inc(j, e) :

rei + rej = 1 (1)
∀t, uj ∈ Nm, ui ∈ N s.t. change(j, t), anc(i, j) :

xit ≥ 1 (2)
∀t, e ∈ Em, ui ∈ N, uj ∈ N s.t. change(e, t), inc(j, e), anc(i, j) :

xit ≥ rej (3)
∀t, e ∈ Em, uj ∈ N : change(j, t), inc(j, e) :

yjt ≥ 1 − rej (4)

Line (1) dictates that each edge has one and only one reporter.
Lines (2) and (3) enforce that for each node that is directly moni-
tored or a reporter, all it ancestors (and itself) must communicate in
timesteps when some of its monitored quantities change. Line (4)
enforces that each node acting as an updater must broadcast in



timesteps when its value changes. The objective function captures
parts of the energy cost that are affected by reporter assignment
(which do not include the per-byte cost of updating directly moni-
tored values). The idea is to find a reporter assignment that works
best for the sample sequence S; if the past is a reasonable predica-
tion of the future, we would expect this assignment to work well.

Despite the use of boolean variables, we can solve the above
program as a linear one, and simply round fractional solutions to
the nearest integer. Because of the linear objective function, the
solution is guaranteed to be within a factor 2 of the optimum; in
practice, the solution tends to be much better than that.

Discussion Collecting history and statistics for CONCH optimiza-
tion is straightforward and in a sense comes “for free” because the
very goal of the lossless data collection is to record all historical
sensor values. Thus, the sample sequence S used in the second
optimization step discussed above can be taken directly from the
archived history. Statistics such as freq , used also in the first opti-
mization step, can be easily derived from S . If no previous history
is available, i.e., CONCH is used on a new deployment, we can
simply use any reasonable spanning forest (e.g., the routing tree)
as a “tentative” plan. We run this tentative plan for a number of
timesteps (e.g., for several days), collect the data, and then use it
to find a better CONCH plan. For the purpose of optimization, we
do not need the tentative plan to specifically monitor or sample any
candidate edge—any valid CONCH plan would give us the change
characteristics of all nodes and all edges.

Our description of CONCH assumes central planning at the base
station, with periodic re-optimization. We can also make CONCH
more dynamic and more responsive to evolving data characteristics,
by enabling nodes to locally adjust portions of the plan. For exam-
ple, an edge reporter can easily swap its role with the updater by
keeping a time-weighted measure of how often the updater sends
updates, together with a mirrored measure of how often its own
value changes. If its own value is changing less frequently than the
updater’s, then it can initiate a swapping of roles.

As another example, a reporter can locally evaluate how much an
edge benefits from spatial suppression. It again maintains statistics,
this time on the frequency with which both nodes change values to-
gether and the frequency with which at least one node changes. The
ratio between the two is a measure of the value of monitoring the
edge. If the nodes rarely change together, then the spatial suppres-
sion is not beneficial. The reporter may then sever the edge. In that
case, both nodes must be directly monitored (since neither knows
which is connected to a directly monitored node).

5 Failure-Resilient CONCH
Reliability is a major concern for wireless sensor networks because
of high failure rates for both nodes and edges. The main obsta-
cle in CONCH is that it depends heavily on suppression for energy
savings. It is difficult to differentiate whether the absence of a mes-
sage is due to suppression or failure. Because we assume the for-
mer, when failure occurs, if a message would otherwise be sent, we
will mis-assign a node value or edge difference; constraint chaining
may cause such errors to propagate to multiple derived values.

There are two types of failures: permanent node failures, and
transient failures causing message loss. To handle permanent node
failures, we use the standard heartbeat technique. If a node has
suppressed updates and reporting for some number of consecutive
timesteps, it sends a heartbeat. If a node fails, neighboring nodes
will detect the absence of either standard or heartbeat messages,
and report the failure to the base station. In addition, if the edge
between a neighbor and the failed node was a monitored edge, the

neighbor severs the edge, reports its own value to the base station,
and turns itself into a directly monitored node. These local adjust-
ments to the CONCH plan ensure the validity of the plan is main-
tained (i.e., values at all nodes besides the failed one can still be
correctly monitored). The base station has the option of installing
a new CONCH plan if the result of local adjustments is inefficient.

In the remainder of this section, we focus on the message loss
problem due to transient failures. A communication edge may tem-
porarily fail for a number of reasons, such as when a moving ob-
stacle temporarily blocks the line of sight between two nodes. It
does not help to exclude such an edge from a CONCH plan, since
we can often expect the edge to be functional again by the time we
could make adjustments. Instead, we propose a framework for cop-
ing with transient failures, which supports reconstruction of values
despite missing updates and removal of data inconsistencies caused
by missing updates.

Overview of Strategy CONCH relies on three types of messages
for monitoring: (1) those reporting node constraint violations, from
a monitored node to the root, (2) those reporting edge constraint
violations, from the reporter of a monitored edge to the root, and
(3) those updating node values used in maintaining edge constraints,
from a monitored edge’s updater to its reporter. Transient failures
of messages of the third type are relatively cheaper to handle be-
cause these messages are single-hop. Here, we use a simple ap-
proach that requires an acknowledgment from reporter back to up-
dater; the updater retransmits its message until an acknowledgment
is received.

For failures of messages of the first two types, however, this sim-
ple approach would be too expensive because these messages may
involve many hops. Not only are multi-hop messages and acknowl-
edgments more costly and prone to higher failure rates, the sequen-
tial nature of the acknowledgment protocol also implies communi-
cation within each timestep can take much longer to finish, which
may lead to unacceptably low reporting frequency. Therefore, for
failures of messages reporting constraint violations, we propose an
alternative strategy that does not require the use of acknowledg-
ments. The remainder of this section discusses this strategy in de-
tail.

Reintroducing Redundancy The key to maintaining CONCH’s vi-
ability is to build redundancy back into CONCH. In Section 4, we
discussed how to build minimal CONCH plans to minimize energy
consumption. The highly non-redundant nature of such plans, how-
ever, makes them extremely susceptible to failures. There are a
number of ways to reintroduce redundancy into CONCH plans, and
we describe one here.

The idea is to build multiple, different spanning forests over the
network. If an edge is used in any of the spanning forests, it is
monitored; also, if a node is a root in any of the spanning forests,
it is directly monitored. In building these forests, our intuition
is to have less reliable edges participate in fewer forests, so the
impact of their failures will be minimal. On the other hand, we
want more reliable edges to participate in most or all forests, in
order to avoid adding more monitored edges where we are con-
fident we can do without. This behavior can be implemented by
integrating failure probabilities into edge weights prior to forest
construction using MST (cf. Section 4.2). Assume a message for
an edge eij gets lost with probability fail(eij). Suppose cnt(eij)
is the number of forests for which eij has already been chosen.
We assign eij the following weight in constructing a new forest:
freq(dij)×dist(eij)× (1+ fail(eij))

cnt(eij )+1. This weight cap-
tures two intuitions. First, less reliable edges have higher weights.
Second, the weights of less reliable edges rise for each subsequent
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forest in which they are chosen. In contrast, edges with perfect
reliability (fail(eij) = 0) never rise in weight.

This approach assumes independent failure probabilities, and then
adds redundancy as needed. Other approaches are possible. For
example, with knowledge of joint failure probabilities, we might
choose subsets of redundant edges that are unlikely to fail at the
same time. If failure is geographically correlated, this approach
implies choosing scattered edges. We plan to fully explore con-
struction of non-minimal CONCH plans in future work.
Reconstructing Values Simply incorporating redundancy does not
allow correct reconstruction of values in the presence of failures.
In fact, while following redundant constraint chains to a particular
node, if an error has occurred in one of these chains, we will likely
generate conflicting values. Consider the network fragment in Fig-
ure 3. It contains one redundant edge, producing two independent
paths from a directly monitored node r to another node c in ques-
tion. The edges are labeled with their last reported differences, one
of which changes from +1 to +2 in the current timestep. In calcu-
lating c’s value, we derive both r+2 and r+3. While we know the
correct current value of ebc, we have no way of discerning which of
the other edges has changed but failed to report and, therefore, no
way of choosing the correct solution. It is crucial that we be able
to step from simply having redundancy to utilizing it to generate
a solution. One option is to generate all possible consistent solu-
tions with associated probabilities. Doing that is difficult, however,
because the solution space can be huge.

Instead, we frame the problem as an optimization that finds the
assignment of node values with the maximum likelihood, condi-
tioned on all reports received by the root in this timestep, the pre-
vious values from the last timestep, as well as any prior knowledge
of value change probabilities and message failure rates. To make
the optimization problem computationally feasible, however, we
have to make some simplifying assumptions. While these assump-
tions obviously may not hold in practice, they may still lead us to a
high-quality (i.e., reasonably likely) assignment of the node values.
Specifically, we assume each monitored quantity changes indepen-
dently with a fixed probability (ci for node ui and cij for edge eij).
We also assume messages reporting constraint violations fail inde-
pendently with a fixed probability (fi for ui reports and fij for eij

reports).
With these assumptions, we can formulate the optimization prob-

lem as a mixed-integer program. Intuitively, the program attempts
to set node values as consistently as possible, favoring inconsisten-
cies in constraints that change more and for which reports fail more.
In the following, let Nr denote the set of monitored nodes for which
the root has received report, and let Er denote the set of monitored
edges for which the root has received report. The program uses
the following constants: vold

i denotes the previous (default) value
at node ui; dold

ij = vold

i − vold

j denotes the previously known (de-
fault) difference along edge eij ; vr

i denotes the new value for ui (if
received); dr

ij denotes the new edge difference value for eij (if re-
ceived). The program sets variables vi (for each node) and dij (for
each monitored edge), representing its belief of the new values for
ui and eij , respectively. Boolean variables xi (for each monitored
node without a report) and yij (for each monitored edge without a

report) are set appropriately by the program to indicate whether the
respective quantities have changed. The program maximizes:

X

ui∈Nm−Nr

xi log
cifi

1 − ci

+
X

eij∈Em−Er

yij log
cijfij

1− cij

,

subject to:

∀ui ∈ Nm −Nr : (xi)(max) ≥ |vi − vold

i | (5)

∀eij ∈ Em −Er : (yij)(max) ≥ |dij − dold

ij | (6)
∀eij ∈ Em : vi + dij = vj (7)
∀ui ∈ Nr : vi = vr

i (8)
∀eij ∈ Er : dij = dr

ij (9)

Lines (5) and (6) (where max is a large number chosen to be greater
than all possible values on the right of the inequalities) appropri-
ately sets the boolean variables. If the calculated node value does
not equal its previous value, the corresponding x variable must be
set to 1; otherwise, it will be set to 0. The same applies to edges.
Line (7) encodes constraint chaining itself; to build a consistent so-
lution, the difference in calculated node values across an edge con-
straint must be equal to the calculated value assigned to the edge
by the program. Lines (8) and (9) state that the calculated value for
any node or edge reported in the current timestep must be set to the
reported value. Therefore, any solution that violated these would
certainly be incorrect. Further, there must exist a feasible assign-
ment with all of these variables fixed. The correctness of reported
node values is obvious; the correctness of reported edge values is
established by the acknowledgment protocol for updater-reporter
communication discussed earlier. This protocol guarantees the re-
porter sees the correct value at the updater, so it never reports an
erroneous edge difference.

The maximization goal, which may appear cryptic at the first
glance, effectively maximizes the logarithm of the probability of
the solution conditional on the received reports. Given the choice
between a reliable, infrequently changing constraint and an unreli-
able, frequently changing constraint, the program prefers to believe
that the latter constraint was violated but the report was lost. Note
that independence assumption is needed here to express the goal as
a linear objective; otherwise, the objective function will be much
more complicated.

The maximum-likelihood approach does have a potential prob-
lem. Although it guarantees its solution is the most likely one,
the probability that it reflects reality may still be very low because
there are so many possibilities. We might have more directed ques-
tions, such as what is the probability a particular node has value
greater than some amount. The mixed-integer program cannot an-
swer these. We plan to explore alternative approaches that do sup-
port these types of questions.

6 Experimental Evaluation
We now evaluate performance of the presented query processing al-
gorithms: temporal suppression, spatial suppression, NEIGHBOR-
HOOD, and CONCH. Spatial is an implementation of [12], with the
global ordering concession mentioned in Section 1. For testbed, we
use our own simulator of a network of Crossbow MICA2 motes [5],
which uses a generic MAC-layer protocol, and models communi-
cation as explained in Section 3. The network resides in a rectan-
gular grid. Each grid point represents a square meter and produces
some value at each timestep. Nodes are randomly placed on grid
points, and takes the values at these grid points as their readings.
Node radio range is set at 50 meters. Because we are interested in
continuous queries, we ignore start-up costs, which are admittedly



higher for CONCH than simpler query plans, because such costs are
amortized over a large number of subsequent timesteps. Hence, in
the following, we focus on the average energy (mJ) expended by
communication per timestep.

We discretize node values in “tiers.” Tier resolution is set to 10
for all experiments, i.e., values in [0, 10) fall into tier 1, values in
[10, 20) fall into tier 2, and so on. Node density is set to 1 node
per 200m2 unless otherwise noted. Each test simulates a differ-
ent combination of value change and network scenarios. To prime
CONCH, we first run each test for a short amount of time with a
default spanning forest, and feed the results to CONCH forest con-
struction. We then evaluate performance using the output forest for
the remainder of the test.

Density of Sensor Nodes We use a simple density experiment to
demonstrate the redundancy problem in NEIGHBORHOOD. In this
scenario, all node values are equal throughout, all rising by a single
tier every timestep. The number of nodes is fixed, but the area of
the network, and therefore density, varies across runs. The results
are shown in Figure 4 with a log-scaled y-axis. Most striking in
this graph is that NEIGHBORHOOD performs far worse than other
algorithms, and its energy consumption increases with density. The
reason is that, as density increases, the number of pairs of nodes
within communication distance of each other increases. Therefore,
average neighborhood size increases, and so does the number of
monitored edge constraints. In each timestep, because all nodes
change tiers, each node broadcasts its value change, and messages
are sent across all edges. While the total number of broadcasts is
unaffected by density, the amount of listening that must occur is
equal to the number of edges. Listening, therefore, accounts for the
increasing energy consumption as density increases. Note since
all node values are equal in this experiment, none are ever sent to
the root. Otherwise, increasing density might also cause reporting
nodes to send increasingly larger reports listing more neighbor val-
ues. Due to NEIGHBORHOOD’s poor performance, we omit it from
future graphs to avoid diluting more interesting results. In contrast,
CONCH, which maintains the same number of constraints regard-
less of density, is unaffected in this experiment. in their reports.

Another interesting feature in the density graph is that spatial
suppression performs quite well, and far better than it does in sub-
sequent experiments. Since all nodes have the same tier value, its
suppression opportunities are maximized. As we increase density
by shrinking area, there are fewer “coverage” nodes, whose reports
allows neighboring nodes to suppress, because each coverage node
has more neighbors.

Consistently Rising Values This experiment is a simple case where
results are predictable. Nodes start with values directly propor-
tional to their distance from the center of the network and all rise
at the same rate of one tier every timestep. We vary the size of
the range between minimum and maximum node values, and thus
the number of tiers; the smaller the range, the fewer the number of
tiers, and the more nodes in the same tier. The results are shown in
Figure 5.

Temporal suppression performs poorly and is unaffected by the
number of tiers. Since nodes always change tiers, all nodes report
their values every timestep. Spatial outperforms temporal with only
a few tiers. When the number of tiers is low, most nodes suppress
themselves because of high likelihood of overhearing a neighbor in
the same tier. CONCH outperforms both spatial and temporal. The
only energy spent is on updaters broadcasting across their edges to
reporters. Since the differences across all monitored edges remain
the same from timestep to timestep, the reporters always suppress
and no messages are sent to the base station. Finally, we examine

NEIGHBORHOOD’s performance (not shown in the figure). Like
CONCH, it suppresses all reports, but still performs poorly despite
this ideal setup. Its excessive edge maintenance consumes as much
energy (at all numbers of tiers) as spatial does at 12 tiers.

Varying the number of tiers does affect spatial’s performance.
Increasing the number of tiers increases the number of unique tier
values that any particular node overhears, which in turn decreases
the probability that the overheard values average to the node’s own
tier and thus, the probability of suppression. Since CONCH uti-
lizes spatial suppression, one might expect the number of tiers to
impact it as well. Remember, though, that CONCH monitors the
differences between nodes. As the number of tiers increases, more
neighboring nodes do have differing tier values, but the differences
between them remain the same in every timestep, so still no reports
are sent.

CONCH completely leverages spatial suppression in this case.
All edges have frequencies of change of zero, while nodes change
every timestep. Therefore, only edge constraints, and no node con-
straints, are monitored. In this case, the spanning forest consists of
a single spanning tree.

Outliers The next two scenarios examine the impact of outliers.
Non-outlier nodes all share the same behavior. In Case 1 non-
outliers remain in the same tier over all timesteps. In Case 2 they
change tiers every timestep. In both cases, with some probability, a
node is chosen to be an outlier, whose value changes drastically and
unpredictably each timestep. We vary the probability with which
nodes are made outliers across runs. Performance for Case 1 is
shown in Figure 6, while Case 2 is shown in Figure 7.

The key difference between the cases is that temporal suppres-
sion shifts from performing as well as CONCH in Case 1, where
both send more energy as outlier probability increases, to perform-
ing much worse in Case 2, where temporal suppression is unaf-
fected by probability. In Case 2, temporal reports every node (whether
outlier or not) every timestep, so is not affected by outlier proba-
bility. In Case 1, non-outliers never change tiers, so temporal only
reports the outliers, exhibiting ideal behavior. CONCH reacts to
Case 1 by monitoring the outliers with node constraints, matching
the same fundamental behavior of temporal. In Case 2, while tem-
poral suffers, CONCH continues to perform well (although with the
added expense of edge updater messages, since nodes change tiers
every timestep). CONCH achieves good performance by continuing
to leverage spatial suppression by monitoring the edges connecting
non-outliers as edge constraints, while monitoring outliers as node
constraints.

Wavefront Wavefront simulates waves passing as vertical lines
from left to right over the network. The frequency is such that
as soon as one wave reaches the right edge of the network, an-
other starts. Wave speed determines how often waves occur. A
node’s value is tied to the distance covered by the recurring wave-
front since it last passed over the node; a node is highest when the
wave is over it and lowest just before. We set value range such that
there are 4 possible tiers. We vary wave speed across runs. The
faster the wave, the more ground it covers between timesteps, so
more nodes change tiers each timestep.

Results are shown in Figure 8. As wave speed increases, as ex-
pected, temporal consumes more energy. CONCH, on the other
hand, continues to consume a low amount of energy; no matter
how quickly the wave moves, the number of reported edges is tied
to the number of borders, the vertical lines dividing the network
into different tiers (4 in this case). Only two types of edges detect
changes to their difference calculations, and must report in a partic-
ular timestep: those that now cross a border but previously did not,
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Figure 4: Density of sensor nodes.
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Figure 5: Consistently rising values.
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Figure 6: Only outliers change.
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Figure 7: Outliers/non-outliers both change.
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Figure 8: Wavefront.
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Figure 9: Heat transfer.

and those that now do not cross a border, but previously did. Spa-
tial, because of its lack of memory of prior state, is unaffected by
wave speed, and performs worse than the other algorithms simply
because too many coverage nodes and nodes along borders must
report.

We also include the algorithm CONCH-COMM, which is CONCH
but with edge scores based solely on the dist (communication dis-
tance to base station) function, ignoring freq . CONCH greatly out-
performs CONCH-COMM, and by an increasing margin as wave
speed increases. The key observation is, since the wave is a ver-
tical line, the best edges to monitor are those connecting nodes
with small difference in x-coordinates. Monitoring these edges de-
creases the likelihood the edge intersects a tier border at a given
time. If no intersection ever occurs, the edge’s nodes always change
tiers simultaneously, so the edge constraint is never violated, and
no reporting is ever done. The slower the wave moves, the fewer
edges chosen by CONCH-COMM are intersected each timestep. As
the wave speeds up, the more likely intersections become, up to a
plateau. CONCH, on the other hand, expressly seeks out vertical or
near-vertical edges that are unlikely to be intersected at any time.
This shows the importance of constructing a minimal spanning for-
est with CONCH scoring, rather than using a naively scored one or
simply the routing tree.

The wavefront example’s favoritism for vertical CONCH edges
provides an opportunity to differentiate the routing tree from the
CONCH forest. We depict these for a mini-setup of the wavefront
scenario with 20 nodes in Figure 10. The routing tree connects
all nodes to the root (in the lower left) in as few hops as possible.
There is no preference for edge direction, and we see edges at a
variety of angles. The CONCH forest contains mostly vertical or
near-vertical edges, with only a few horizontal edges, necessary to
connect all nodes.

Heat Transfer This scenario uses a model of heat transfer bor-
rowed from [3]. An event raises the temperature at some grid point.
In subsequent timesteps, the heat disperses outward to neighboring

points, until the network eventually reaches equilibrium. In each
epoch, T (i, j), the temperature at grid point (i, j), is updated using
the temperatures from the previous epoch according to the follow-
ing calculation:

T (i, j)←T (i, j) + a
“

T (i + 1, j) + T (i− 1, j)+

T (i, j + 1) + T (i, j − 1)− 4T (i, j)
”

.

Here, a ≤ 0.25 is a dispersion factor. We experiment with heat
transfer by varying the length of a timestep (time between queries)
as measured by the number of epochs. The more time lapses, the
more heat transfers without detection, and the more change occurs
from the previous sensor reading.

We find spatial suppression, in addition to NEIGHBORHOOD, is
dramatically more expensive than temporal and CONCH. To avoid
diluting the most interesting result, we plot only these last two in
Figure 9. As expected, both algorithms spend more energy the
more time lapses between queries. When the change between con-
secutive timesteps is small, they perform similarly. With longer
time between queries, changes accumulate more. The cost of tem-
poral increases at a much higher rate because more nodes report,
but CONCH increases slowly. As in the wavefront scenario, CONCH
prefers to monitor edges whose nodes are affected by heat trans-
fer in the same way and at the same time. In this scenario, it fa-
vors edges between nodes that are equidistant from the heat source.
Both algorithms’ slopes of increasing consumption begin to level
out when query interval is very long, because the number of nodes
exhibiting change each query update increases slowly by this point.

Experiments Involving Failures
We next evaluate the approach to handling failures presented in
Section 5 with a 100-node network. Our goal is to test the viability
of the approach for recovering a reasonably accurate solution in the
presence of failures. To that end, we build a simple CONCH tree
containing just a single tree root, and incorporate redundancy by
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Figure 10: Routing vs. CONCH trees.
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Figure 11: Random walk with failures.

adding additional edges to monitor at random. The number of ad-
ditional edges is chosen as a percentage of the number of possible
remaining edges that can be monitored. Therefore, 0% leaves the
CONCH tree as is, while 100% turns the CONCH tree into NEIGH-
BORHOOD, with all possible edges monitored. As we will see from
experiment results, the effectiveness of low-percentage redundancy
points to the overkill in NEIGHBORHOOD’s redundancy. We gen-
erate failures as follows. Given a failure rate range, say 30%–50%,
we pick a rate for each monitored quantity at random from this
range, and subject reporting messages for this quantity to this fail-
ure rate.

Random Walk The first reliability experiment is a random walk
scenario with density set to 1 node per 600m2. All grid points be-
gin with equal values. At each timestep, the new value at a grid
point is drawn from a normal distribution centered at the previous
value at this grid point. There is no spatial correlation among val-
ues in this scenario, as in wavefront or heat transfer, and so CONCH
does not provide great benefit. We mainly use this scenario to pro-
duce a test where many reports are needed to produce the correct
solution, rather than just few ones. If only one report is needed in
a round, for example, we either get 0% or 100% accuracy for the
round, depending on if that report is successfully transmitted. With
random walk, we see a smooth interplay between failure rates, re-
dundancy, and solution error. We graph failure rate ranges versus
average error (percentage of node values that are not correctly as-
signed by our approach per timestep), and plot results for a series
of CONCH plans, each built with differing amounts of redundancy.
We run the random walks for 10 timesteps, starting after an initial
timestep when all constraints try to report. Results are shown in
Figure 11, and depict two major trends: First, the higher the failure
rate, the higher the error; second, the higher the redundancy rate,
the lower the error.

Heat Transfer We next return to the heat transfer scenario to see
the impact of redundancy under conditions favorable to CONCH.
Density is set higher at 1 node per 56m2. In the base case of
neither failure nor redundancy, few reports are sent to derive all
node values. We expect, then, to be “lucky” some timesteps and
receive all of those reports, and “unlucky” other timesteps, where
even one failed report results in many miscalculated values. To in-
vestigate this phenomenon, we make two plots. Figure 12 shows
performance of different redundancy levels for increasing failure
rates. Figure 13 shows the cumulative distribution of error rate in
each timestep (query rounds) during a run, for a number of redun-
dancy levels. That is, for a particular error percentage e on the x-
axis, the y-coordinate of a point is the percentage of query rounds
with error rate no more than e. Failure rate for Figure 13 is fixed
in the range 30%–50%. The cumulative distribution shows that
the lucky/unlucky phenomenon occurs at low redundancy levels,

with some rounds at low and some at high error levels. This phe-
nomenon is pronounced at low redundancy levels by constraints
that change infrequently, which our approach tends to trust, but
may have failed at some point. In subsequent rounds, until the con-
straint changes again, the reported value continues to be incorrect,
with few chances to counter it. The phenomenon diminishes at
higher redundancy levels, where error rate is low for all rounds.

Finally, we examine the cost of redundancy. Additional redun-
dancy means more constraints potentially report. In contrast, fail-
ure means less reports reach the root. Using the heat transfer sce-
nario, Figure 14 plots average number of constraint-update reports
received at the root versus average error rate. The varying number
of reports is the result of running CONCH at different redundancy
levels, labeled on the plot. Failure rate is fixed at 20%–40%. As
expected, as redundancy level increases, the number of reports in-
creases, and error decreases. Temporal suppression appears as a
point. For temporal, we assume that nodes fail to report with 30%
probability. In that case, given a 100-node network, 70 nodes re-
port and average error is 30%. CONCH is immediately more ac-
curate than temporal with far fewer reports. The 0%-failure (and
0%-redundancy) case is drawn as a vertical line, which serves as a
base case for comparison. At 0% redundancy CONCH sends fewer
reports than the base case but, of course, with a sacrifice in accu-
racy. As the number of reports meets and exceeds the baseline,
accuracy improves. The number of reports necessary to push error
near 0% is quite a bit higher than the base case, demonstrating re-
dundancy is not close to free. This finding serves as motivation to
do a thorough investigation of what to monitor redundantly in order
to push error suitably low, while at the same time minimizing the
overhead.

In the scenarios we have tested, failure rates are assigned in a
fairly tight range. In practice, we might expect reports for some
constraints to fail with high likelihood (due to location of the node,
for example) and others to be very reliable. If so, it should be
easier for our integer-program approach to decide which constraints
to dismiss when resolving conflicts. More thorough evaluation is
needed to verify this conjecture.

In summary, our experiments involving failures show that we can
effectively leverage the extra information provided by redundancy
to set node values with some accuracy. Nevertheless, we pay a
price for redundancy by monitoring more constraints. Further, as
failure rate increases, our ability to recover values accurately de-
creases. Therefore, redundancy is a viable technique for coping
with failures, but more work is needed in this area.

7 Conclusion and Future Work
We have investigated using temporal and spatial suppression for
the problem of continuously collecting all readings from a sensor
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Figure 12: Heat transfer with failures.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

Pe
rc

en
ta

ge
 o

f Q
ue

ry
 R

ou
nd

s

Error Percentage

0%
0.5%

1%
2%
4%

Figure 13: Error CDF; heat transfer.
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network. Our suppression techniques can benefit many monitoring
scenarios, where change is slow or predictable, and data is spatially
correlated. We develop an effective monitoring policy combining
both suppression types. We present NEIGHBORHOOD as a first
attempt at using this policy, but show its redundancy hampers its
usefulness. Progressing from there, minimal CONCH uses a span-
ning forest that monitors the minimum number of constraints pos-
sible, solving the redundancy problem. We present techniques for
building a spanning forest with minimal monitoring costs. Then,
to cope with failures, we add redundancy back into CONCH, and
develop a method for correctly interpreting results affected by fail-
ure, but bolstered by redundancy. Our experimental results show
CONCH indeed performs as well as or outperforms other algorithms
in most cases, degrading gracefully to temporal suppression in spe-
cific cases where edge monitoring has no advantage. The results
also show that it is feasible to use redundancy to compensate for
failure and recover node values with reasonable accuracy.

In the future we plan on advancing CONCH in two directions.
The first is to maintain constraints of increasing complexity, involv-
ing more larger spatial models that move beyond pair-wise monitor-
ing. The second is to further improve our failure-handling strategy,
by developing better techniques for selectively introducing redun-
dancy to maximize its benefit, and for reasoning with data contain-
ing uncertainty that arises from failures.
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