
Dual Labeling: Answering Graph Reachability Queries in Constant Time

Haixun Wang1 Hao He2 Jun Yang2 Philip S. Yu1 Jeffrey Xu Yu3
1IBM T. J. Watson Research Center,{haixun,psyu}@us.ibm.com

2Duke University,{haohe,junyang}@cs.duke.edu
3The Chinese University of Hong Kong, yu@se.cuhk.edu.hk

Abstract

Graph reachability is fundamental to a wide range of ap-
plications, including XML indexing, geographic navigation,
Internet routing, ontology queries based on RDF/OWL, etc.
Many applications involve huge graphs and require fast an-
swering of reachability queries. Several reachability label-
ing methods have been proposed for this purpose. They
assign labels to the vertices, such that the reachability be-
tween any two vertices may be decided using their labels
only. For sparse graphs, 2-hop based reachability labeling
schemes answer reachability queries efficiently using rel-
atively small label space. However, the labeling process
itself is often too time consuming to be practical for large
graphs. In this paper, we propose a novel labeling scheme
for sparse graphs. Our scheme ensures that graph reach-
ability queries can be answered in constant time. Further-
more, for sparse graphs, the complexity of the labeling pro-
cess is almost linear, which makes our algorithm applicable
to massive datasets. Analytical and experimental results
show that our approach is much more efficient than state-
of-the-art approaches. Furthermore, our labeling method
also provides an alternative scheme to tradeoff query time
for label space, which further benefits applications that use
tree-like graphs.

1 Introduction
Given two verticesu andv in a directed graph, we want

to know if there is a path fromu to v. The problem is known
as graph reachability, and has been well-explored in several
fields of computation [3, 8, 2, 19, 17]. In many applica-
tions (e.g., XML query processing), graph reachability is
one of the most basic operations, which means fast process-
ing is mandatory. A näıve approach to this problem is to
precompute the reachability between every pair of vertices
– in other words, to compute and store the transitive closure
of the graph, so that we can answer reachability queries in
constant time. However, this requiresO(n2) storage, which
makes it impractical for massive graphs.

Recently, Cohen et al. [8] showed that, for sparse graphs,
a sophisticated graph labeling method called 2-hop can an-

swer reachability queries efficiently (although not in con-
stant time) using much less storage. This result is important
because most real life massive graphs are sparse. However,
2-hop labeling itself may incur a tremendous amount of
computation cost. In fact, according to Schenkel et al. [20],
it takes a 64-processor, 80-Gb memory Sun server more
than 45 hours to label the well-known DBLP dataset [14]
using Cohen’s algorithm [8]. Clearly, in practice, such la-
beling methods cannot be used for massive graphs. To
resolve this, we introduce a novel labeling algorithm for
sparse graphs. Our method labels a sparse graph in almost
linear time, and answers reachability queries in constant
time.

1.1 Applications

Answering reachability queries efficiently is important
to applications in many areas ranging from XML query
processing to genome biology. Recently, the interest in
graph reachability is rekindled by research on XML data
processing. XML documents are often represented by tree
structures. Nevertheless, an XML document may contain
IDREF/ID reference links that turn itself into a directed
graph. One of the most important research topics on XML is
efficient evaluation of structural queries. For example, con-
sider a simple path expression//fiction//author that
queries authors who write fictions. A typical way of pro-
cessing this query is to obtain (possibly through some index
on elements) allfiction andauthor elements, and then
test if anauthor element is reachable from anyfiction
element in the XML graph. Reachability testing thus be-
comes a fundamental operation in XML query processing.
It is clear to see that efficient support for reachability test-
ing is crucial to XML query processing because it is invoked
heavily for answering complex queries on large datasets.

Reachability labeling schemes such as 2-hop focus on
sparse graphs as graphs in most real life applications are
sparse [8]. For instance, XML documents are mostly
tree structures plus a few reference links. The XMark
dataset [1], which is designed to model e-commerce ap-
plications and has since become a popular benchmark for
evaluating the performance of XML query processing, is
sparse — the density (edge/vertex ratio) of an XMark doc-

1

ument is about1.15. In biology, graph and network models
of all kinds have been used on research topics such as gene-
regulatory networks or metabolic networks. Graph reach-
ability models such relationships as whether two genes in-
teract with each other or whether two proteins participate in
a common pathway. Many such graphs are sparse. For ex-
ample, HumanCyc [18], a bioinformatics database that de-
scribes human metabolic pathways and human genome, has
40,051 vertices and 43,879 edges, yielding an edge/vertex
ratio of 1.096. Eco O157Cyc, a dataset in the EcoCyc
database [13] that consists of annotated genome sequences
of Escherichia coli, has 13,800 vertices and 17,308 edges,
yielding an edge/vertex ratio of1.25.

1.2 Challenges

Given ann-vertex,m-edge directed graph, we have two
näıve approaches to handle reachability queries. One is to
use the single source shortest path algorithm, that is, for any
two vertices, we use the shortest path algorithm to deter-
mine if they are connected. This approach may takeO(m)
query time, but requires no extra data structure besides the
graph itself for answering reachability queries. The other
extreme is to compute and store the transitive closure of the
graph. It answers reachability query in constant time but
needO(n2) space to store the transitive closure of ann-
vertex graph. Many applications involve massive graphs,
yet require fast answering of reachability queries. This
makes the näıve approaches infeasible.

Several approaches have been proposed to encode graph
reachability information using vertex labeling schemes [3,
8, 19, 20]. A labeling scheme assigns labels to vertices in
the graph, and it answers reachability queries by comparing
the labels of the vertices. Interval-based labeling is best for
tree structures. For graphs, however, reachability queries
may takeO(m) time using the interval-based approach. Co-
hen et al. [8] proposed the 2-hop labeling scheme so that
for sparse graphs reachability queries can be answered ef-
ficiently using relatively less storage. However, it has been
shown that there exist graphs for which any reachability la-
beling is of sizeO(nm1/2), which yields toO(n2) in the
worst case. Correspondingly, each 2-hop label has aver-
age lengthO(m1/2), which means answering reachability
queries requiresO(m1/2) comparisons.

Furthermore, labeling can be a time costly process. For
instance, finding optimal 2-hop labels is NP-hard. Using ap-
proximation algorithms, Cohen et al. [8] reduced the com-
plexity to O(n4), and later, the HOPI algorithm proposed
by Schenkel et al. [19, 20] reduced it toO(n3). But it is
still impractical for massive graphs.

1.3 Our Approach and Contributions

We propose a novel method called dual labeling to han-
dle reachability queries for massive, sparse graphs. The
goal is to optimize both query time and labeling time. Our
method consists of two schemes, Dual-I and Dual-II. The
Dual-I labeling scheme has constant query time, and for

Query time Index time Index size
Shortest Path O(m) 0 0
Transitive Closure O(1) O(n3) O(n2)
Interval O(n) O(n) O(n2)

2-Hop O(m1/2) O(n4) O(nm1/2)

HOPI O(m1/2) O(n3) O(nm1/2)
Dual-I O(1) O(n + m + t3) O(n + t2)
Dual-II O(log t) O(n + m + t3) O(n + t2)

Table 1:Complexity comparison

sparse graphs, the labeling complexities of both Dual-I and
Dual-II are almost linear. The Dual-II scheme has higher
query complexity but uses less space in practice. Table 1
compares our dual labeling approaches with existing ap-
proaches.

In our approach, we consider a graph as having two com-
ponents: a tree (spanning tree) plus a set oft non-tree edges.
For sparse, tree-like graphs, we assumet ¿ n. As we have
previously mentioned, many real life graphs are sparse.

The two components together contain the complete
reachability information of the original graph. The dual la-
beling scheme seamlessly integrates i) interval-based labels,
which encode reachability in the spanning tree, and ii) non-
tree labels, which encode additional reachability in the rest
of the graph. At query time, we first consult the interval-
based labels to see if two nodes are connected by tree edges,
if not, we consult non-tree labels, and check if they are con-
nected by paths that involve non-tree edges. For Dual-I,
both operations have constant time complexity. For Dual-
II, the second operation takesO(log t) time. Sincet ¿ n
for sparse graphs,O(log t) is often negligible. Furthermore,
the two set of labels can be assigned by depth-first traversal
of the graph, which is of linear complexity. The prepro-
cessing step may takeO(t3) time in the worst case. How-
ever, as we will demonstrate in our experiments, this cost
is almost negligible for sparse graphs. To check reachabil-
ity encoded by non-tree labels, the Dual-I approach relies
on an additional data structure of sizet2. Since the span-
ning tree of a connected graph hasn − 1 edges, the num-
ber of non-tree edgest is at mostm − n + 1. This means
for XMark datasets [1] whose edge/vertex ratio is approxi-
mately 1.15, the extra storage is about0.022n2, and for the
HumanCyc dataset [18], the extra storage is about0.009n2,
both of which is much smaller than then2 space used by
the transitive closure matrix. Still, we introduce a trade-
off between time and space. By paying a negligible cost of
O(log t) in query time, the Dual-II scheme manages to use
much less space in query processing1.

From our discussion above, it is clear thatt, the number
of non-tree edges, is an important performance factor in our
approach. In this paper, we show that we can reducet with-

1Although in the worst case the space requirement for Dual-II is still
O(n + t2), in practice the space requirement is much less.

2

out losing reachability information in the original graph if
we choose the spanning tree carefully. As a matter of fact,
if we find spanning trees in the minimal equivalent graph of
the original graph, we can minimizet, thus further improv-
ing query and indexing performance.

The rest of the paper is organized as follows. In Sec-
tion 2, we survey some related work in the field of graph
reachability. Section 3 presents the dual labeling scheme for
encoding graph reachability. Section 4 introduce the time
space tradeoff to further reduce label size. In Section 5 we
discuss an optional processing step that finds the minimal
equivalent graph of the input graph. Section 6 evaluate our
approach on several datasets, and we conclude in Section 7.

2 Related Work

Graph reachability has applications in a wide range of ar-
eas. For example, in objected-oriented programming, graph
reachability is important in managing class inheritance hier-
archies. Äıt-Kaci et al. [4] proposed a bottom-up bit vector
labeling scheme (calledmodulation) that usesO(n) bits per
label, wheren is the number of vertices. Later, Caseau [5]
proposed a top-down labeling scheme (calledcompact hi-
erarchical encoding) to exploit the reuse potential of the
bits in order to achieve more compact encoding. In the area
of semantic web, Christophides et al. [7] applied efficient
labeling schemes to the problem of encoding subsumption
hierarchies. In the area of network flow optimization, Katz
et al. [12] proposed a method for labeling flow and con-
nectivity in weighted flow graphs. However, their scheme
assumes undirected graphs, where reachability is a much
simpler problem.

Recently, reachability labeling has enjoyed much atten-
tion due to its application in XML query processing. The
interval-based labeling scheme is one of the most widely
used labeling scheme for tree structures. It assigns an in-
terval to each node in a tree structure, and the ancestor-
descendant relationships between two nodes can be deter-
mined by checking set containment relationships between
their interval labels. For tree structures, the interval-based
labeling approach answers reachability queries in constant
time, and the labeling process is of linear complexity.
Agrawal et al. [3] extends the interval-based approach to
DAGs. In his approach, each nodeu is assigned a set of
non-overlapping intervalsL(u). A nodev is reachable from
u iff every interval inL(v) is contained by some interval in
L(u). Although labels can still be assigned efficiently, for
large, complicated graphs, the size ofL(u) can be linear in
the graph size. Because reachability queries require check-
ing containment relationship for all intervals in a label, long
labels can seriously impact query performance.

The 2-hop approach [8] was proposed to handle graph
reachability queries. The2-hop approach assigns to each
nodeu two labels,Cin(u) andCout(u), whereCin(u) con-
tains a set of nodes that can reachu, andCout(u) contains a
set of nodes reachable fromu. Then, a nodev is reachable

from nodeu if Cout(u) ∩ Cin(v) 6= ∅. For the 2-hop ap-
proach, the overall label size can be as large asO(nm1/2),
which in the worst case approaches theO(n2) space re-
quirement of the näıve approach that stores the transitive
closure for reachability queries. For the 2-hop approach,
reachability queries may takeO(m1/2) time because the
average size of each label isO(m1/2). An important issue
with regard to the 2-hop approach is the complexity of its
labeling process. Finding optimum 2-hop labeling is equiv-
alent to solving the weighted set covering problem, which is
NP-hard. Cohen et al. used an approximation algorithm that
greedily finds the largest uncovered submatrix in the tran-
sitive closure matrix in each step. Still, the process is ex-
tremely time consuming for large datasets. Recently, much
work has focused on improving the labeling efficiency of
the 2-hop method. The HOPI algorithm [19, 20], for ex-
ample, reduces 2-hop’s labeling complexity fromO(n4) to
O(n3). However, it still cannot be applied to applications
that involve massive graphs.

3. Dual Labeling
In this section, we present our dual labeling approach.

The input is a directed graphG = (V,E) with |V | = n
and |E| = m, and we assume it is acyclic. If not, we
find strongly connected components ofG and collapse each
component into a representative node. Clearly, all of the
nodes in a strongly connected component is equivalent to its
representative node as far as reachability is concerned. This
step takesO(n + m) time using Tarjan’s algorithm [16].
Then, we find a spanning tree in the graph, and assign
interval-based labels and non-tree labels to each node in
the graph. We call this labeling scheme theDual-I label-
ing scheme. We show that the complexity of assigning dual
labels is close to linear for sparse graphs, and the Dual-I
labeling scheme answers reachability queries inO(1) time.

3.1. Non-Tree Edges and the Transitive Link Table

Our first step is to find a spanning tree in the graph so that
we can assign interval-based labels to the nodes. We keep
track of the non-tree edges so that the reachability informa-
tion is complete. Note that the choice of the spanning tree
has an impact on number of non-tree edges we must keep
track of. We postpone the discussion of finding an optimum
spanning tree to Section 5.

We use an example to demonstrate the problem at hand.
In graphG shown in Figure 1, there are two nodes,x andy,
whose in-degrees are greater than 1. This prevents us from
directly applying interval-based labeling toG.

We find a spanning treeT in G. Let the solid lines in
Figure 2 represent the edges of the spanning tree, then the
dotted lines arenon-tree edges. We assign an interval-based
label[start, end) to each nodeu, wherestart andend− 1
are u’s preorder and postorder number respectively (with
regard to the spanning tree). Then, if the preorder number
of nodev is inside the range of[start, end), thenv is u’s
descendant in the spanning tree.

3

x

y

Figure 1: An input graph

x

y

[0,11)

[1,5)

[2,5)

[5,11)

[6,9)

[9,11)

[3,4) [4,5) [7,8) [8,9) [10,11)

u

vw

Figure 2: A spanning tree with interval-based labels

The reachability information contained in graphG and
T are not the same. Thus, in addition to the tree, we must
also keep track of the non-tree edges. If there is a non-tree
edge from a node labeled[a, b) to a node labeled[c, d), then
we record the edge in alink table. We denote this link by:

a → [c, d)

Note that ifc ∈ [a, b), which means node[c, d) is reachable
from node[a, b) via tree edges already, then the non-tree
edge is superfluous, and there is no need to keep track of
it. In Section 5, we show how input graphs can be prepro-
cessed to remove superfluous edges so that the number of
non-tree edges we need to store in the link table is minimal.

Combining interval-based labels and the link table, we
have complete reachability information of the graph, as the
following lemma indicates.

Lemma 1. Assume two nodesu andv are labeled[a, b) and
[c, d) respectively. There is a path fromu to v iff c ∈ [a, b)
or the link table contains a series ofm non-tree edges

i1 → [j1, k1), . . . , im → [jm, km) (1)

such that i1 ∈ [a, b), c ∈ [jm, km), and im′ ∈
[jm′−1, km′−1) for all 1 < m′ ≤ m.

Proof. Interval-based labeling guaranteesc ∈ [a, b) is the
necessary and sufficient condition of the existence of a tree
path between node[a, b) and [c, d). If a path fromu to v
containsm non-tree links, then we can express the path in
the form of Eq 1. On the other hand, if we are given a series
of non-tree links as Eq 1, then becausei1 ∈ [a, b), c ∈
[jm, km), andim′ ∈ [jm′−1, km′−1) for all 1 < m′ ≤ m,
we know there is a path between[a, b) and[c, d).

As an example, in Figure 2, the path fromu to v involves
the non-tree edge9 → [6, 9), and the path fromu to w
involves two non-tree edges9 → [6, 9) and7 → [1, 5).

Applying Lemma 1 näıvely for answering reachability
queries would involve traversing and exploring the non-tree
edges in an iterative fashion, which is extremely costly. To
“shortcut” this graph search, we can compute the transitive
closure of the link table. That is, given two linksi1 →
[j1, k1) andi2 → [j2, k2) in the link table, ifi2 ∈ [j1, k1),
we add a new linki1 → [j2, k2) to the table. We repeat
this process until no new links can be added. We call the
resulting table thetransitive link tableand denote itT .

Consider the example graph shown in Figure 2. From its
link table which contains two non-tree edges9 → [6, 9) and
7 → [1, 5), we generate a new link9 → [1, 5). Therefore,
the transitive link table consists of the following entries:

9 → [6, 9)
7 → [1, 5)
9 → [1, 5)

Property 1 (Size of the Transitive Link Table). Assume
the original link table hast entries. The transitive link table
can have up to but no more thant(t+1)

2 entries.

Proof. We denote each entry in the link table asL(i) →
R(i), wherei = 1, · · · , t. A derived link has the form
L(i) → R(j), i 6= j. Thus, potentially we can addt(t− 1)
entries. LetL(i) → R(j) be a derived link. It must be
derived from a series of linksL(i) → R(i), · · · , L(j) →
R(j). Then, the node represented byL(j) is reachable from
the node represented byR(i). Because the graph does not
have cycles, the potential entryL(j) → R(i) cannot be de-
rived. This means at most half of the entries are eligible to
be added into the transitive link table.

The following theorem follows directly from Lemma 1
and the definition of the transitive link table.

Theorem 1. Assume nodesu andv are labeled[a, b) and
[c, d) respectively. There is a path fromu to v if and only if
c ∈ [a, b) or there exists an entryi → [j, k) in the transitive
link table such thati ∈ [a, b), andc ∈ [j, k).

Thus, to check reachability between two nodes, we
search the transitive link table. A linear search has time
complexity O(t2). In the remainder of this section, we
present methods to reduce the search complexity toO(1).

3.2. Transitive Link Counting

Following the above discussion, given two nodesu and
v with labels [a1, b1) and [a2, b2), we want to find out if
there exists an entryi → [j, k) in the transitive link table
such thati ∈ [a1, b1) anda2 ∈ [j, k). Figure 3 serves to
further illustrate the problem and show the intuition behind
our solution given below.

4

a
1
 b
1

a
2

b
2

i

j

k

Figure 3: Intuition

Each link i → [j, k) in the transitive link table can be
represented as a vertical line segment withi as thex coor-
dinate and[j, k) as the range of they coordinate. The two
nodes of interest, with labels[a1, b1) and[a2, b2), are repre-
sented as a query rectangle. Thus, the question ofwhether
there exists a linki → [j, k) such thati ∈ [a1, b1) and
a2 ∈ [j, k) is tantamount to the question ofwhether there
exists a vertical line segment that intersects (stabs through)
the lower edge of the query rectangle.

We note here that this is an instance of therange-
temporal aggregationproblem [21], for which a number of
existing data structures with logarithmic query time are di-
rectly applicable. We will elaborate more on this point when
we discuss space-time tradeoffs in Section 4. For now, how-
ever, our goal isO(1) query time. Fortunately, our instance
of the problem has many special properties that we can ex-
ploit for efficiency. Namely, the links in the transitive link
table are not arbitrary vertical line segments, and the query
rectangles are not arbitrary either; the endpoints of these ob-
jects all have coordinates corresponding to numbers used in
interval labeling of a tree. We will see how to exploit these
properties for efficient query processing.

As a first cut, we define theTLC (transitive link count)
functionN(·, ·) over the two-dimensional space as follows.

Definition 1 (Transitive Link Count). The TLC function
N(x, y) computes the number of linksi → [j, k) in the tran-
sitive link table that satisfyi ≥ x andy ∈ [j, k).

In Figure 3, the geometric interpretation ofN(a1, a2) is
the number of vertical line segments intersecting the hor-
izontal rayx ≥ a1, y = a2. Similarly, N(b1, a2) is the
number of vertical line segments intersecting the horizontal
ray x ≥ b1, y = a2. Hence, the number of vertical line
segments intersecting the lower edge of the query rectangle
can be computed byN(a1, a2)−N(b1, a2).

As a concrete example, based on the transitive closure
table for the graph in Figure 2 in Section 3.1, we have
N(9, 3) = 1 because there is a link9 → [1, 5) that satisfies
the condition of Definition 1, and we haveN(11, 3) = 0
because no link satisfies the condition.

The following theorem shows that, with the TLC func-
tion N(·, ·), reachability queries can be answered directly.

Theorem 2. Assume two nodesu andv are labeled[a1, b1)
and [a2, b2) respectively, andu is not an ancestor ofv in

the spanning tree (i.e.,a2 6∈ [a1, b2)). Nodev is reachable
from nodeu via some non-tree links if and only if

N(a1, a2)−N(b1, a2) > 0 (2)

Proof. According to Theorem 1,v is reachable fromu via
one or more non-tree edges if and only if there is a link
i → [j, k) in the transitive link table such thati ∈ [a1, b1)
and a2 ∈ [j, k). According to Definition 1, there are
N(a1, a2) links satisfyingi ≥ a1 anda2 ∈ [j, k); among
them,N(b1, a2) links havei ≥ b1. Thus, there is at least
one link that satisfiesi ∈ [a1, b1) anda2 ∈ [j, k) as long as
N(a1, a2)−N(b1, a2) > 0.

As an example, consider the reachability between node
u and nodew in Figure 2. Here, the two nodes are la-
beled [9, 11) and [3, 4) respectively. We haveN(9, 3) −
N(11, 3) = 1 − 0 > 0, thus we knoww is reachable from
u via some non-tree links.

Based on the above discussion, we know that if we com-
pute and storeN(x, y) for any pair ofx and y, then the
reachability query can be answered in constant time. The
cost of storing one particularN(x, y) value is low, as the
following property shows.

Property 2 (Size of a TLC Value). Any value ofN(·, ·)
can be stored in2 log t bits.

Proof. According to Definition 1,N(·, ·) is the number of
links in the transitive link table that satisfy a certain con-
dition. Since there are no more thant(t + 1)/2 transitive
links, the range ofN(·, ·) is [0, t(t + 1)/2], thus it requires
no more than2 log t bits to store each value.

Unfortunately, if we storeN(·, ·) for each and every in-
put pair that might be used for querying, the storage require-
ment would be prohibitive. The reason is that interval labels
useΘ(n) distinct numbers, meaning that the number of pos-
sible input pairs forN(·, ·) is O(n2), which is unacceptable
for large graphs. Next, we discuss ways to avoid storing the
TLC function for all possible inputs.

3.3. Space Reduction by Gridding and Snapping

To reduce the storage requirement of the TLC function,
we first observe that its value can change only atx coordi-
nates where there is a vertical line segment, or aty coordi-
nates where a vertical line segment begins or ends.

Intuitively, we can think of the two-dimensional space as
covered by a grid of cells. Figure 4 shows the grid for the
example graph in Figure 2. From Definition 1, it should be
clear that for each grid cell, the value of the TLC function
remains constant throughout the interior of the cell as well
as its lower and right boundaries. Therefore, we can simply
store the value at the lower-right corner point as the repre-
sentative for the entire cell (cells to the far right do not need
any representatives because the TLC value in them is al-
ways0). To look up the value ofN(x, y), we simply “snap”

5

7
 9

1

5

6

9

x

y

Grid point

Close endpoint

Open endpoint

0
 0

1
 1

0
 0

2
 1

*
 *

*
 *

*
 Grid point selected in
N

(x,y)

x

y

1
 1

1
2

TLC
 Matrix

Figure 4: The TLC grid andN(x, y) values

the point(x, y) to its representative grid point and retrieve
the stored TLC value.

We can further reduce the storage requirement by more
intelligent “snapping” that exploits the fact that all line seg-
ments come from interval labeling of a tree. Suppose we
are checking reachability from[a1, b1) to [a2, b2) through
non-tree edges, which can be determined by computing
N(a1, a2) − N(b1, a2). The following lemma shows that
we can instead computeN(a1, a0) − N(b1, a0), wherea0

is the start label of the lowest (tree) ancestor of[a2, b2)
that has a non-tree incoming edge. Intuitively, the only way
for [a1, b1) to reach[a2, b2) is through this node. Using this
lemma, we only need to computeN(·, ·) for y coordinates
that correspond to the lower ends of some vertical line seg-
ments. Therefore, we only need to store the TLC values at
the following grid points (at mostt2 of them):

{i | i → [j, k) ∈ T} × {j | i → [j, k) ∈ T}.

Lemma 2. Consider any two nodes labeled[a1, b1) and
[a2, b2) where[a2, b2) 6⊆ [a1, b1). Let [a0, b0) be the label
of the lowest (tree) ancestor of[a2, b2) (or itself) with a non-
tree incoming edge in the link table. If such a node exists,
thenN(a1, a2) − N(b1, a2) = N(a1, a0) − N(b1, a0). If
no such node exists, thenN(a1, a2)−N(b1, a2) = 0.

Proof. In the case where no such node exists, it is obviously
impossible for[a1, b1) to reach[a2, b2), so N(a1, a2) −
N(b1, a2) = 0. We now focus on the case when[a0, b0)
exists.N(a1, a2)−N(b1, a2) counts the number of vertical
line segments intersectingx ∈ [a1, b1), y = a2. Thus, it
suffices to prove that any vertical line segment intersecting
y = a0 must intersecty = a2, and vice versa. For any ver-
tical line segmenti → [j, k) intersectingy = a0, [j, k) is an
interval label containinga0; therefore,[j, k) is an ancestor
of [a0, b0) and in turn must be an ancestor of[a2, b2), which
implies thati → [j, k) also intersectsy = a2. On the other
hand, for any vertical line segmenti → [j, k) intersecting
y = a2, [j, k) containsa2 and therefore is an ancestor of
[a2, b2). At the same time, the fact thati → [j, k) ∈ T
implies that[j, k) has a non-tree incoming edge. However,

[a0, b0) is the lowest ancestor of[a2, b2) with a non-tree
incoming edge. Therefore,[j, k) must be an ancestor of
[a0, b0) or [j, k) = [a0, b0); either way, [j, k) intersects
y = a0.

To store the TLC values at necessary grid points, we use
aTLC matrixN. Let indexx(i) denote the position (starting
from 0) of i within the set{i | i → [j, k) ∈ T} ordered by
value, and similarly, letindexy(j) denote the position ofj
within the ordered set{j | i → [j, k) ∈ T}. We store the
TLC valueN(i, j) atN[indexx(i), indexy(j)]. Clearly,N
is at most at× t matrix. The algorithm for constructing the
TLC matrix is given as Algorithm 1.

Algorithm 1 Build the TLC matrix

COMPUTETLCMATRIX (G)
1: for each non-tree edgea → [b, c] in G do
2: inserta into the ordered listX
3: insertb into the ordered listY
4: indexx(x) (indexy(y)) is the index ofx in X (y in Y)
5: initialize an|X| × |Y | matrixN
6: initialize a counter listC(y) = 0 for eachy ∈ Y
7: xc = max(x) in X
8: for eachi → [j, k) ∈ T whereT is decreasingly sorted

by i do
9: if i < xc then

10: for eachy ∈ Y do
11: N[indexx(xc), indexy(y)] = C(y)
12: xc = i
13: for eachy ∈ [j, k) do
14: C(y) = C(y) + 1
15: for eachy ∈ Y do
16: N[indexx(xc), indexy(y)] = C(y)

3.4. Non-Tree Labeling

We now show how to assignnon-tree labelsto nodes,
which would enable us to answer reachability queries in
constant time with the help from the TLC matrixN.

Definition 2 (Non-Tree Labels). Let u be a node with
interval label [a, b). The non-tree labelsof u is a triple
〈x, y, z〉, where

• x = indexx(a′), wherea′ = min{i | i → [j, k) ∈
T ∧ i ≥ a)}. If such ana′ does not exist, letx be the
special symbol “−.”

• y = indexx(b′), whereb′ = min{i | i → [j, k) ∈
T ∧ i ≥ b)}. If such ab′ does not exist, lety be “−.”

• z = indexy(a∗), wherea∗ is the start interval label of
the lowest (tree) ancestor ofu with a non-tree incom-
ing edge. If such ana∗ does not exist, letz be “−.”

6

Figure 5 shows an example of the non-tree labels. For
instance, the non-tree label of the root node is〈0,−,−〉, be-
cause (1) the root start label “snaps” to the firstx-coordinate
in the TLC grid; (2) the root end label lies beyond the last
x-coordinate and therefore “snaps” to−; and (3) the root
has no ancestor with non-tree incoming edge. Similarly, the
non-tree labels of nodesu andv are〈1,−,−〉 and〈1, 1, 1〉,
respectively.

x

y

[0,11)

[1,5)

[2,5)

[5,11)

[6,9)

[9,11)

[3,4) [4,5) [7,8) [8,9) [10,11)

u

vw

(0,-,-)

(1,-,-)

(0,0,0) (0,0,0) (0,1,1) (1,1,1) (-,-,-)

(0,-,-)(0,0,0)

(0,0,0) (0,1,1)

Figure 5: Graph with non-tree labeling

To assign non-tree labels, we use Algorithm 2. It ba-
sically traverses the spanning tree in a depth-first manner
following the order of interval labels. Thex component of
the non-tree label is assigned when the traversal enters the
node, and they component is assigned when the traversal
leaves the node. These labels are assigned in constant time
by stepping through the ordered list ofx-coordinates in the
TLC grid in parallel. To assign thez component, a stack is
used to keep track of the lowest ancestor with a non-tree in-
coming edge. Algorithm 2 has linear complexity. Besides,
the process of creating the transitive link table (Section 3.1)
in the worst case may takeO(t3) steps, and Algorithm 1
O(t2) steps. Sincet ¿ n, our labeling algorithm is much
more efficient than the popular 2-hop labeling [8], which
has complexityO(n4), or the HOPI algorithm [20], which
has complexityO(n3).

Now, we have the complete Dual-I labeling scheme. It is
also the main result of this paper, which shows that we can
answer reachability queries in constant time with interval
labels, non-tree labels, and the help of the TLC matrixN.

Theorem 3. Suppose two nodesu and v are labeled
([a1, b1), 〈x1, y1, z1〉) and ([a2, b2), 〈x2, y2, z2〉) respec-
tively. Nodev is reachable from nodeu if and only if:

• a2 ∈ [a1, b1), or

• N[x1, z2]−N[y1, z2] > 0. 2

Proof. (Sketch) If v is reachable fromu by tree edges,
then we havea2 ∈ [a1, b1). Otherwise, the only way
u can reachv is via non-tree edges. According to The-
orem 2,v is reachable fromu via some non-tree edge if
N(a1, a2) − N(b1, a2) > 0. We use the same symbolsa′,

2Let N[x,−] = N[−, y] = 0, ∀x, y.

Algorithm 2 Non-tree Labeling

ASSIGNNONTREELABEL(G)
1: Stack← {−}
2: X andY are the same lists defined in Algorithm 1
3: append− to the end ofX
4: i = 0
5: for eachroot in G sorted byroot.startdo
6: LABEL(root)

LABEL(n)
1: ix ← i
2: if n has an incoming linkthen
3: Stack.push(indexy(n.start))
4: for each childc of n do
5: LABEL(c)
6: if n.end> X(i) then
7: i = i + 1
8: iy ← i
9: n’s non-tree label is〈ix, iy, Stack.top()〉

10: if n has an incoming linkthen
11: Stack.pop()

b′ anda∗ as in Definition 2. If we can show

indexx(a1) = indexx(a′1) = x1,

indexx(b1) = indexx(b′1) = y1,

indexy(a2) = indexy(a∗2) = z2,

then the theorem is proved.
According to Definition 2, there is no linki → [j, k] such

that i ∈ [a1, a
′
1), which meansindexx(a1) = indexx(a′1).

Similarly, indexx(b1) = indexx(b′1). Sincea∗2 is v’s clos-
est ancestor with an incoming link, there is no linki →
[j, k) such thatj ∈ [a∗2, a2), which meansindexy(a2) =
indexy(a∗2). Putting everything together, we have:

N[x1, z2]−N[y1, z2] = N(a1, a2)−N(b1, a2) > 0

For example, in Figure 5, the non-tree labels of nodeu
andw are〈1,−,−〉 and〈0, 0, 0〉 respectively. Althoughu
is not an ancestor ofw in the spanning tree,w is reachable
from u becauseN[1, 0]−N[−, 0] = 1 > 0.

4. Trading off Time for Space
The Dual-I labeling scheme introduced in the previous

section supports constant query time by using non-tree la-
bels (totalingO(n) space) and a TLC matrix (O(t2) space)
in addition to interval labels. In this section, we propose the
Dual-II labeling scheme, which reduces the space require-
ment of the Dual-I scheme.

There are two potential opportunities for reducing the
space requirement. (1) We can try to avoid using non-tree
labels altogether. Although doing so does not lower the

7

asymptotic space complexity overall (because interval la-
bels already takeO(n) space), the space saving can be sig-
nificant in practice. (2) We can replace the TLC matrix with
an alternative data structure with lower space complexity.
To realize these space saving opportunities, however, we
need to make commensurate sacrifice in query efficiency.
We discuss a number of approaches that explore this space-
time tradeoff below.

In order to avoid storing any non-tree labels, we propose
TLC search treeas an alternative to the TLC matrix, so that
we can efficiently search for the value ofN(x, y) for any in-
put pair without remembering which grid point(x, y) snaps
to. The TLC search tree has two layers. The lower layer
consists of a sequence of mini-trees, each indexing a row
of TLC grid points (with the samey coordinate) by theirx
coordinates, as shown in Figure 6. Consecutive entries with
identical TLC values do not need to be duplicated. The up-
per layer indexes the sequence of mini-trees by theiry co-
ordinates. To computeN(x0, y0), we first search the upper
layer for the mini-tree with the largesty ≤ y0; then, we
search this mini-tree for the entry with the smallestx ≥ x0.
The TLC value of result entry is equal toN(x0, y0). This
computation takeO(log t) time overall, because there are at
most2t mini-trees and each mini-tree has at mostt entries.
Although in the worst case the TLC search tree may index
2t2 entries and requireO(t2) space, in practice it may take
less space than the TLC matrix because of the optimization
that collapses consecutive entries with identical TLC values
in each row.

7
 9

1

5

6

9

x

y

0
 0

1
 1

0
 0

2
 1

9: 0

9: 1

9: 0

7: 2

9: 1

Figure 6: The search tree

Another approach that can further reduce storage in some
situations is by casting the problem of checking reachability
through the transitive link table as arange-temporal aggre-
gation problem[21]. In Figure 6, we can regard the hori-
zontal axis as the value dimension and the vertical axis as
the temporal dimension. Each entryi → [j, k) of the tran-
sitive link table, represented as a vertical segment, can be
regarded as a fact with valuei that is “alive” during time
interval [j, k). The query that checks whether there ex-
ists a vertical segment that intersects the horizontal segment
([a1, b1), a2) can be reduced to a range-temporalCOUNT
query that counts the number of facts alive at timea2 whose
values are in[a1, b1). The range-temporalCOUNTprob-
lem has been studied extensively in both databases and al-

gorithms communities. Suppose the transitive link table
contains|T | entries. In external memory with block size
B, the multiversion SB-tree[21] can solve the problem
in O(logB |T |) time usingO(|T |B logB t) space; theCRB-

tree[10] further improves the space requirement toO(|T |B).
In internal memory, thecompressed range-tree[6] can solve
the problem inO(log2 |T |) time withO(|T |) space. Any of
these data structures can replace the TLC matrix or the TLC
search tree while also avoiding non-tree labels. In terms of
query time, they are similar to the TLC search tree. In terms
of space, they are least linear in|T |, which isO(t2). There-
fore, these structures do not necessarily take less space than
the TLC search tree (alsoO(t2) space), especially because
they are more complicated and have bigger constant-factor
space overhead not shown in asymptotic notation. However,
in situations where there are many non-tree edges that can-
not reach one another (i.e.,|T | ¿ t2), we should use one of
these data structures if logarithmic query time is acceptable.

5 Minimal Equivalent Graph
Recall that dual labeling starts with finding a spanning

tree of the input graph (Section 3.1). The reachability infor-
mation in the input graph is embodied by the edges in the
tree plus some non-tree edges in the graph. The choice of
the spanning tree has an impact on the number of necessary
non-tree edges we must keep track of. In this section, we fo-
cus on minimizing the number of non-tree edges to reduce
the extra space we need in dual labeling.

A

B

C

D

E

F

A

B

C E

D F

(a) (b)

Figure 7: A graph and its minimal equivalent graph

Consider the graph shown in Figure 7(a). Many of its
edges are superfluous as far as reachability is concerned. If
the spanning tree consists of the bold-lined edges as shown
in Figure 7(b), then no non-tree edge is needed, because the
tree contains all reachability information. However, if we
choose an arbitrary spanning tree, it is likely that we need
to keep track of some non-tree edges. The question is how
to choose a spanning tree such that the number of non-tree
edges is minimal?

Agrawal et al. [3] finds the optimum tree-cover for a
graph to minimize the number of intervals for interval-based
labeling. Our focus is to minimize the number of non-tree
edges. To do this, we find a minimal equivalent graph in
the original graph, that is, we try to remove the maximum
number of edges from the input graph without affecting its

8

reachability. Then, we find a spanning tree in the reduced
graph. Clearly, the remaining non-tree edges are minimal.

An algorithm for finding the minimal equivalent graph
was given by Moyles and Thompson [15]. Their approach
requires a maximum of up to|V |3 +

∑|V |−1
i=2

(|V |−1
|V |−i

)
steps

of computation and a very large storage. Later, Hsu [11]
gave anO(n3) algorithm for finding the minimal equiva-
lent graph in a DAG by first computing its transitive closure
matrix and then simplifying the matrix.

We propose an algorithm to find minimal equivalent
graphs for sparse DAGs. We want to avoid computing
the transitive closure matrix, because theO(n2) storage re-
quirment is infeasible for large graphs. Our algorithm re-
moves superfluous edges directly from the sparse graph. Al-
though in the worst case (when each node is a parent of a
given node), our algorithm may have to keep the ancestor
sets of all nodes, in practice, it takes much less space and
run time. The outline of our method is given in Algorithm 3.

Algorithm 3 Reduce a DAG to its minimal equivalent graph

M INIMAL EQUIVALENT GRAPH(G)
1: sort nodes inG into topological orderv1, · · · , vn

2: Sv1 = ∅ /* ancestors ofv1 */
3: for each nodev in the topological orderdo
4: assumep1, · · · , pk arev’s parent nodes
5: for eachpi do
6: if ∃j, pi ∈ Spj then
7: remove edgepi → v from G
8: Sv = {p1, · · · , pk} ∪ Sp1 ∪ · · · ∪ Spk

First, we sort the nodes inG topologically into a linear
orderv1 · · · vi · · · vn. Clearly, any node that can reach node
vi must appear beforevi in the linear order. The time com-
plexity of the topological sort isO(n + m).

Then, we visit the nodes in the topological order. For
each nodev, we remove edgepi → v from G if pi is an
ancestor of any ofv’s parent. The ancestors ofpi can be
computed as we visit the nodes in the topological order, and
they can be discarded if all ofpi’s child nodes have been
visited.

We use the graph in Figure 7(a) as an example. The topo-
logical order isA,B, C, D, E, F . We visit the nodes in this
order and remove superfluous edges. For instance, when we
visit nodeC, we shall remove edgeA → C, because node
A is in the ancesotr set of nodeB. Finally, the graph is
reduced to Figure 7(b).

Now, we show that the remaining graph is indeed a
minimal equivalent graph. That is, it is the smallest sub-
graph that contain all reachability information of the origi-
nal graph.

Theorem 4. The graph generated by Algorithm 3 is a min-
imal equivalent graph.

Proof. First we show that the edges removed by Algo-
rithm 3 will not affect the reachability of the graph. Assume

an edgepi → v is removed. According to the algorithm,
there must exist a path that connectspi to v throughpj , that
is, pi

∗→ pj → v. But pi → v cannot be part of the path
pi

∗→ pj because otherwisev
∗→ pj → v becomes a cycle,

which contradicts to the acyclic assumption ofG. Second,
we show that the remaining graph is minimal. Assume we
remove one more edgepi → v. Now v is not reachable
from pi, because it is neither reachable frompi directly, nor
through any ofv’s parent nodes.

6 Experiments
In this section, we evaluate our proposed Dual-I and

Dual-II labeling schemes. We implemented both schemes
in C++ using the Boost Graph Library [9] for graph sup-
port. We also implemented the interval-based and the 2-hop
labeling methods for comparison. We evaluate them on two
types of synthetic data – random graphs (Section 6.1) and
single rooted DAGs (Section 6.2), as well as some real life
graphs (Section 6.3). The experiments are carried out on a
PC with a3.0 GHz Intel Pentium 4 processor, 1GB memory
and 40GB hard drive.

We measure the time and space complexity of the above
labeling approaches. Time complexity has been our main
concern. We measureindexing timefor creating labels and
query timefor answering reachability queries. A query is
generated by randomly picking a pair of nodes for reacha-
bility test. For every labeling scheme, we measure the time
of answering100, 000 same random reachability queries.
We noticed that the overhead of100, 000 iterations of re-
trieving two nodes accounts for a large proportion in the
total running time. To resolve this, we measure the baseline
time of an “no-op” iteration, that is, we retrieve two nodes
but do nothing else in the loop. The realquery timeis de-
fined as the difference between the total elapsed time and
the baseline time. Besides time complexity, we also mea-
sure thestorage requirementsof the labeling schemes and
compare with storing the transitive closure matrix.

6.1 Random Graphs

We evaluate the performance of the labeling schemes
over random graphs generated by the Boost Graph li-
brary [9]. In Figure 8, we show the results on graphs having
2000 nodes, with the number of edges ranging from2100
to 3900 (on the X axis). We have tested random graphs of
various sizes and densities, and the results are consistent.

Random graphs are likely to contain cycles. Our pre-
processing step merges strongly connected components into
representative nodes, and the optional step of findingmini-
mal equivalent graphsremoves superfluous edges. The first
bar chart in Figure 8 illustrates the reduction of nodes and
edges after applying the two preprocessing steps. The ra-
tio keeps decreasing when the number of edges increases,
which means, the denser a random graph is, the more likely
it contains cycles, and the more likely it contains superflu-
ous edges. Note in the bar chart, since the number of edges

9

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
0

0.2

0.4

0.6

0.8

1
D

A
G

 R
at

io

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
10

2

10
6

10
8

10
10

La
be

lin
g

T
im

e
(µ

 s
ec

)

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of edges in original random graphs

Q
ue

ry
 T

im
e

(µ
 s

ec
)

Interval
2−hop
Dual−I
Dual−II

Vertex
Edge
MinEqui Edge

Figure 8: Results for random graphs with different edges (|V | =
2000, |Q| = 100, 000)

in the original graphs is increasing (on thex axis), ratio de-
crease does not mean that the absolute number of edges is
dropping. In fact, the number of edges after preprocessing
reaches its peak value of2214 when the original graph has
2500 edges.

The bar chart in the middle of Figure 8 reportsindexing
time of the random graph (after preprocessing). It shows
that our Dual-I and Dual-II labeling schemes are compara-
ble to interval-based labeling, which confirms our claim that
the indexing complexity of the dual labeling schemes is al-
most linear. Compared to dual labeling, the 2-hop approach
is2 to3 orders of magnitude more time consuming. Particu-
larly, note that the indexing time of the 2-hop increases dra-
matically when the number of edges increases from2100 to
2300. This is because when the number of edges is around
2100, the graph is very sparse, and most nodes are only
connected to a few other nodes. In other words, theCin and
Cout labels for most nodes are very small, so the value of
S(in, out)∩T can be quickly evaluated. When the number
of edges increases to a certain level, long paths in the graph
are formed, andCin andCout become large, which results
in an significant increase of indexing time.

The bar chart in the bottom of Figure 8 reportsquery
time over the random graphs. The numbers are averaged
over multiple runs. We observe the following: i) Although
the labeling time of the interval-based approach is compa-

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
10

2

10
4

10
6

10
8

La
be

lin
g

Ti
m

e
(µ

 s
ec

)

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
0

1

2

3

4

5
x 10

5

Number of edges in single−rooted graphs

Q
ue

ry
 T

im
e

(µ
 s

ec
)

Interval
2−hop
Dual−I
Dual−II

Figure 9: Results for single rooted DAGs with different edges
(|V | = 2000, |Q| = 100, 000)

rable to our dual labeling approaches, it has the worst query
performance. ii) The Dual-II labeling scheme is compara-
ble to 2-hop in query performance. iii) The Dual-I label-
ing scheme consistently performs the best. In summary, the
dual labeling approach optimizes both indexing (labeling)
time and query time, and the experiment results shown here
verified our theoretical analysis of the advantage of the dual
labeling method.

6.2 Single Rooted DAGs

Except for 2-hop labeling, all other labeling schemes first
convert input graphs into DAGs. We generate synthetic sin-
gle rooted DAGs in order to study labeling performance
more specifically. To generate DAGs, we first generate a
spanning tree in a breadth-first manner. The shape of the
spanning tree is adjusted by a maximum fanout parame-
ter. Then we add non-tree edgesu → v between randomly
picked nodesu andv. To generate DAGs, we ensureu is on
a higher level (the root is in the top level) thanv. If u and
v are on the same level, thenu must have a smallerstart
label (on the left).

Figure 9 shows the indexing time and query time for
DAGs of 2000 nodes and varying number of edges. We
found the results are similar to those obtained from random
graphs: the dual labeling schemes outperforms other ap-
proaches in query time and is comparable to interval-based
labeling in indexing time, which again confirms in practice,
dual labeling schemes have almost linear indexing complex-
ity. The 2-hop approach is 2 orders of magnitude more time
consuming than the dual labeling approach. Note that when
graphs are very sparse (e.g., with 2100 edges), the label-
ing process of 2-hop takes much longer when the graph is
a DAG than when it is a random graph. The reason lies
in the characteristics of the graph: a single rooted DAG is

10

2100 2300 2500 2700 2900 3100 3300 3500 3700 3900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of edges

Q
ue

ry
 T

im
e

(µ
 s

ec
)

Interval
2−hop
Dual−I
Dual−II

Figure 10:Query time of DAGs (|V | = 2000, max fanout = 9)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

4

10
5

10
6

10
7

10
8

10
9

L
a

b
e

lin
g

 T
im

e
 (

µ
se

c)

Number of nodes

Interval
2−hop
Dual−I
Dual−II

Figure 11: Indexing time for DAGs of fixed density, increasing
size

different from a sparse random graph in that all nodes are
connected in the DAG even if the number of edges is small,
in which case,Cin andCout of many nodes in the DAG are
much larger than those in the random graph.

Next, we discuss the impact of the shape of the graph
on query performance. The DAGs used for Figure 9 are
generated based on spanning trees of maximum fanout5,
so the spanning tree is thin and tall. Figure 10 shows the
query time for DAGs generated with maximum fanout9.
The conclusion is that query performance is not sensitive to
the graph shape. Another graph characteristic is its density.
We experimented with DAGs of fixed density (m/n = 1.5).
We find query performance consistent with previous exper-
iments. In Figure 11, we show the impact of DAG size on
indexing time when the density is fixed. The interval-based
approach is the fastest; the Dual-I and Dual-II schemes are
a little slower but still comparable to the interval approach;
the 2-hop is slower than other approaches by several orders
of magnitude.

We now discuss the space requirements of the labeling
schemes. Unlike the interval-based and the 2-hop labeling
schemes, the Dual-I labeling scheme also relies on aTLC
matrix, and the Dual-II labeling scheme relies on a search
tree. We study both the space and the time complexity of the
labeling schemes. Figure 12 and Figure 13 show the space
requirement and the query time performance using the same
synthetic graphs (number of nodes fixed at2000 and num-
ber of edges varying from2100 to 3000). The space re-
quirement of the transitive closure matrix is shown as a hor-
izontal line in Figure 12. It shows that the space require-

ment of the Dual-I scheme grows fast with the increase of
graph density, and that the space requirement of the Dual-II
scheme is comparable with the 2-hop and the interval-based
approaches. It shows that Dual-I is good for sparse graphs
only. However, as we see in Figure 13, the query perfor-
mance of Dual-I is barely worse than that of the transitive
closure matrix and is certainly much better than other label-
ing schemes. In other words, when a graph is quite sparse,
the Dual-I scheme achieves query performance close to that
of the transitive closure matrix without paying the latter’s
storage cost. In fact, as indicated by Figure 14, many real
life graphs, such as VchoCyc, AgroCyc, EcoO157 [13],
and Xmark [1] are sparse enough to bring out the advantage
of the Dual-I labeling scheme. Figure 14 shows the required
space for graphs with number of nodes fixed at10, 000. We
did not show the curve for the 2-hop approach in Figure 14
because it is too time consuming to compute 2-hop labels
for graphs with10, 000 nodes.

6.3 Real Graphs

We also show results on some real graphs. The first four
datasets in Table 2 are from EcoCyc [13]. The last dataset is
an XML document generated by the XMark benchmark [1].
The first two columns are the numbers of nodes and edges
in the original graph. The next two columns are those of
the DAGs after preprocessing. The|EMEG| column shows
the number of edges of the minimal equivalent graph. We
report the indexing time and the query time. Because the
2-hop labeling is extremely slow to build for large graphs
(the XMark graph takes307 minutes for 2-hop labeling),
we only evaluate the results of the other three approaches.
The results are consistent with our previous experiments on
synthetic graphs. Our Dual-I and Dual-II approaches are
not much different from interval-based labeling in indexing
time, and outperform interval-based labeling by at least one
order of magnitude in query time.

7 Conclusion
Many applications involve massive, sparse graphs, yet

require fast answering of graph reachability queries. State
of the art reachability labeling schemes such as 2-hop have
relatively efficient query performance, but has high com-
plexity of indexing (labeling), which prevents them from
being used on massive graphs. In this paper, we propose
a novel graph reachability labeling scheme called the dual
labeling scheme. It seamlessly integrates interval-based la-
bels and non-tree labels, and achieves constant time query
processing (the Dual-I scheme). Furthermore, the label-
ing complexity of our approach is close to linear for sparse
graphs, which makes it applicable to massive datasets. The-
oretical and experiment analysis demonstrated the effective
of our approach.

References
[1] XMARK: The XML-benchmark project.

http://monetdb.cwi.nl/ xml, 2002.

11

2000 2200 2400 2600 2800 3000
10

3

10
4

10
5

10
6

Number of edges in single−rooted DAGs

La
be

l S
iz

e
(b

yt
e)

Interval
2−hop
Dual−I
Dual−II

Transitive Closure Matrix

Figure 12: Label sizes of DAGs (|V | =
2000)

2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of edges

Q
ue

ry
 T

im
e

(µ
 s

ec
)

Interval
2−hop
Dual−I
Dual−II
Trans.Clo.Matrix

Figure 13: Query Time of DAGs (|V | =
2000)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

x 10
4

10
4

10
5

10
6

10
7

10
8

Number of edges

La
be

l S
iz

e
(b

yt
e)

Interval
Dual−I
Dual−II

Transitive Closure Matrix

XMark HpyCyc VchoCyc

AgroCyc
Ecoo157

Figure 14: Label sizes of DAGs (|V | =
10000)

Indexing Time (ms) Query Time (ms)
Graph Name |VG| |EG| |VDAG| |EDAG| |EMEG| Interval Dual-I Dual-II Interval Dual-I Dual-II

AgroCyc 13969 17694 12684 13408 13094 39242 40001 39916 1720 131 243
Ecoo157 13800 17308 12620 13350 13025 38529 39826 39037 1056 115 201
HpyCyc 5565 8474 4771 5859 5649 5926 6324 6253 806 108 337
VchoCyc 10694 14207 9491 10143 9860 21770 21943 22186 3253 81 165
XMark 6483 7654 6080 7028 6957 9065 9208 9767 1075 71 198

Table 2:Results of some real graphs

[2] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling
schemes for ancestor queries. InProc. ACM-SIAM Sympo-
sium on Discrete Algorithms(SODA), 2001.

[3] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient man-
agement of transitive relationships in large data and knowl-
edge bases. InSIGMOD, pages 253–262, 1989.

[4] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient
implementation of lattice operations.ACM Trans. Program.
Lang. Syst., 11(1):115–146, 1989.

[5] Y. Caseau. Efficient handling of multiple inheritance hier-
archies. InProc. of the 1993 Conf. on Object-oriented Pro-
gramming Systems, Languages, and Applications, 1993.

[6] B. Chazelle. A functional approach to data structures and
its use in multidimensional searching.SIAM J. Comput.,
17(3):427–462, 1988.

[7] V. Christophides, D. Plexousakis, and et al. On labeling
schemes for the semantic web. InProc. of the 12th Intl. Conf.
on WWW, 2003.

[8] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. InPro-
ceedings of the 13th annual ACM-SIAM Symposium on Dis-
crete algorithms, pages 937–946, 2002.

[9] Beman Dawes and David Abrahams. The boost c++ library.
http://www.boost.org/.

[10] Sathish Govindarajan, Pankaj K. Agarwal, and Lars Arge.
Crb-tree: An efficient indexing scheme for range-aggregate
queries. InICDE, 2003.

[11] Harry T. Hsu. An algorithm for finding a minimal equivalent
graph of a digraph.SIAM Journal of Computing, 22(1):11–
16, 1975.

[12] M. Katz, N. A. Katz, and et al. Labeling schemes for flow
and connectivity. InProc. of the 13th ACM-SIAM SODA,
2002.

[13] I.M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham,
S. Paley, I.T. Paulsen, M. Peralta-Gil, and P.D. Karp. Eco-
cyc: A comprehensive database resource for escherichia coli.
Nucleic Acids Research, 33(D334-D337), 2005.

[14] Michael Ley. DBLP database web site.
http://www.informatik.uni-trier.de/ ley/db, 2000.

[15] D. M. Moyles and G. L. Thompson. An algorithm for finding
a minimal equivalent graph of a digraph.SIAM Journal of
Computing, 16(3):455–460, 1969.

[16] R. Paige and R. Tarjan. Three partition refinement algo-
rithms. SIAM Journal of Computing, 16:973–988, 1987.

[17] Liam Roditty and Uri Zwick. A fully dynamic reachability
algorithm for directed graphs with an almost linear update
time. InSTOC, 2004.

[18] P. Romero, J. Wagg, M. L. Green, D. Kaiser, M. Krum-
menacker, and P. D Karp. Computational prediction of hu-
man metabolic pathways from the complete human genome.
Genome Biology, 6(1):1–17, 2004.

[19] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An effi-
cient connection index for complex XML document collec-
tions. InEDBT, 2004.

[20] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation
and incremental maintenance of the HOPI index for complex
xml document collections. InICDE, 2005.

[21] Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras,
Dimitrios Gunopulos, and Bernhard Seeger. Efficient com-
putation of temporal aggregates with range predicates. In
PODS, 2001.

12

