Implementing RSA Encryption
in Java

Encryption and decryption

- Alice and Bob would like to communicate in private
- Alice uses RSA algorithm to generate her public and private keys
- Alice makes key (k, n) publicly available to Bob and anyone else wanting to send her private messages
- Bob uses Alice's public key (k, n) to encrypt message M : - compute E(M) =(M) ${ }^{k}$ \%
- Bob sends encrypted message $E(M)$ to Alice
- Alice receives $\mathrm{E}(\mathrm{M})$ and uses private key (d, n) to decrypt it:
- compute $D(M)=\left(E(M)^{d}\right) \%$ n
- decrypted message $D(M)$ is original message M

RSA algorithm

- Select two large prime numbers
p, q
- Compute
$n=p \times q$
$v=(p-1) \times(q-1)$
- Select small odd integer k relatively prime to v $\operatorname{gcd}(\mathrm{k}, \mathrm{v})=1$
- Compute d such that
$(\mathrm{d} \times \mathrm{k}) \% \mathrm{v}=(\mathrm{k} \times \mathrm{d}) \% \mathrm{v}=1$
- Public key is (k, n)
- Private key is (d, n)

- example
$p=11$
$q=29$
$n=319$
$v=280$
$k=3$
$d=187$
- public key
$(3,319)$
- private key
$(187,319)$

Outline of implementation

- RSA algorithm for key generation
- select two prime numbers p, q
- compute $n=p \times q$
$v=(p-1) \times(q-1)$
- select small odd integer k such that
$\operatorname{gcd}(\mathrm{k}, \mathrm{v})=1$
- compute d such that
$(\mathrm{d} \times \mathrm{k}) \% \mathrm{v}=1$
- RSA algorithm for encryption/decryption
- encryption: compute $E(M)=\left(M^{k}\right) \%$ n
- decryption: compute $\mathrm{D}(\mathrm{M})=\left(\mathrm{E}(\mathrm{M})^{\mathrm{d}}\right) \%$ n

RSA algorithm for key generation

- Input: none
- Computation:
- select two prime integers p, q
- compute integers $n=p \times q$

$$
v=(p-1) \times(q-1)
$$

- select small odd integer k such that $\operatorname{gcd}(k, v)=1$
- compute integer d such that $(\mathrm{d} \times \mathrm{k}) \% \mathrm{v}=1$
- Output: n, k, and d

RSA algorithm for encryption

- Input: integers k, n, M
- M is integer representation of plaintext message
- Computation:
- let C be integer representation of ciphertext

$$
\mathrm{C}=\left(\mathrm{M}^{k}\right) \% n
$$

- Output: integer C
- ciphertext or encrypted message

RSA algorithm for decryption

- Input: integers d, n, C
-C is integer representation of ciphertext message
- Computation:
- let D be integer representation of decrypted ciphertext
D = (Cd)\%n
- Output: integer D
- decrypted message

This seems hard ...

- How to find big primes?
- How to find mod inverse?
- How to compute greatest common divisor?
- How to translate text input to numeric values?
- Most importantly: RSA manipulates big numbers
- Java integers are of limited size
- how can we handle this?
- Two key items make the implementation easier - understanding the math
- Java's BigInteger class

What is a BigInteger?

- Java class to represent and perform operations on integers of arbitrary precision
- Provides analogues to Java's primitive integer operations, e.g.
- addition and subtraction
- multiplication and division
- Along with operations for
- modular arithmetic
- gcd calculation
- generation of primes
- http://java.sun.com/j2se/1.4.2/docs/api/

Using BigInteger

- If we understand what mathematical computations are involved in the RSA algorithm, we can use Java's BigInteger methods to perform them
- To declare a BigInteger named B

BigInteger B;

- Predefined constants

BigInteger. ZERO
BigInteger. ONE

Randomly generated primes

BigInteger probablePrime(int b, Random rng)

- Returns random positive BigInteger of bit length \mathbf{b} that is "probably" prime
- probability that BigInteger is not prime $<2^{-100}$
- Random is Java's class for random number generation
- The following statement

Random rng = new Random(); creates a new random number generator named $\mathbf{r n g}$

probablePrime

- Example: randomly generate two BigInteger primes named \mathbf{p} and \mathbf{q} of bit length 32 :
/* create a random number generator */ Random rng = new Random();
/* declare p and q as type BigInteger */
BigInteger p, q;
/* assign values to p and q as required */
p = BigInteger.probablePrime(32, rng);
q = BigInteger.probablePrime(32, rng);

Euler's Phi Function

- For a positive integer $n, \phi(n)$ is the number of positive integers less than n and relatively prime to n
- Examples:

$-\phi(3)=2$	1,2
$-\phi(4)=2$	$1,2,3$ (but 2 is not relatively prime to 4)
$-\phi(5)=4$	$1,2,3,4$

For any prime number p
$\phi(p)=p-1$

- For any integer n that is the product of two distinct primes p and q .

$$
\begin{aligned}
\phi(\mathrm{n}) & =\phi(\mathrm{p}) \phi(\mathrm{q}) \\
& =(\mathrm{p}-1)(\mathrm{q}-1)
\end{aligned}
$$

Greatest common divisor

- The greatest common divisor of two numbers x and y is the largest number that divides both x and y
- this is usually written as $\operatorname{gcd}(x, y)$
- Example: $\operatorname{gcd}(20,30)=10$
-20 is divided by $1,2,4,5,10,20$
- 30 is divided by $1,2,3,5,6,10,15,30$
- Example: $\operatorname{gcd}(13,15)=1$
-13 is divided by 1,13
- 15 is divided by $1,3,5,15$
- When the gcd of two numbers is one, these numbers are said to be relatively prime

Relative primes

- Suppose we have an integer x and want to find an odd integer z such that
$-1<z<x$, and
$-z$ is relatively prime to x
- We know that \mathbf{x} and \mathbf{z} are relatively prime if their greatest common divisor is one
- randomly generate prime values for z until $\operatorname{gcd}(x, z)=1$
- if x is a product of distinct primes, there is a value of z satisfying this equality

Relative BigInteger primes

- Suppose we have declared a BigInteger \mathbf{x} and assigned it a value
- Declare a BigInteger z
- Assign a prime value to z using the probablePrime method
- specifying an input bit length smaller than that of \mathbf{x} gives a value $\mathbf{z < x}$
- The expression
(x.gcd(z)).equals(BigInteger.ONE)
returns true if $\operatorname{gcd}(x, z)=1$ and false otherwise
- While the above expression evaluates to false, assign a new random to \mathbf{z}

Multiplicative identities and inverses

- The multiplicative identity is the element e such that
for all elements $x \in X$
- The multiplicative inverse of x is the element x^{-1} such that

$$
x * x^{-1}=x^{-1} * x=1
$$

- The multiplicative inverse of $\mathrm{x} \bmod \mathrm{n}$ is the element x^{-1} such that
$\left(\mathrm{x} * \mathrm{X}^{-1}\right) \bmod \mathrm{n}=\left(\mathrm{x}^{-1} * \mathrm{x}\right) \bmod \mathrm{n}=1$
-x and x^{-1} are inverses only in multiplication $\bmod \mathrm{n}$

Implementing RSA key generation

- We know have everything we need to implement the RSA key generation algorithm in Java, so let's get started ..

