
1

Implementing RSA Encryption
in Java

RSA algorithm

• Select two large prime numbers
p, q

• Compute
n = p × q
v = (p-1) × (q-1)

• Select small odd integer k
relatively prime to v

gcd(k, v) = 1
• Compute d such that

(d × k)%v = (k × d)%v = 1
• Public key is (k, n)
• Private key is (d, n)

• example
p = 11
q = 29
n = 319
v = 280
k = 3
d = 187

• public key
(3, 319)

• private key
(187, 319)

Encryption and decryption

• Alice and Bob would like to communicate in private
• Alice uses RSA algorithm to generate her public and

private keys
– Alice makes key (k, n) publicly available to Bob and

anyone else wanting to send her private messages
• Bob uses Alice’s public key (k, n) to encrypt message M:

– compute E(M) =(Mk)%n
– Bob sends encrypted message E(M) to Alice

• Alice receives E(M) and uses private key (d, n) to
decrypt it:
– compute D(M) = (E(M)d)%n
– decrypted message D(M) is original message M

Outline of implementation

• RSA algorithm for key generation
– select two prime numbers p, q
– compute n = p × q

v = (p-1) × (q-1)
– select small odd integer k such that

gcd(k, v) = 1
– compute d such that

(d × k)%v = 1
• RSA algorithm for encryption/decryption

– encryption: compute E(M) = (Mk)%n
– decryption: compute D(M) = (E(M)d)%n

RSA algorithm for key generation

• Input: none

• Computation:
– select two prime integers p, q
– compute integers n = p × q

v = (p-1) × (q-1)
– select small odd integer k such that gcd(k, v) = 1
– compute integer d such that (d × k)%v = 1

• Output: n, k, and d

RSA algorithm for encryption

• Input: integers k, n, M
– M is integer representation of plaintext message

• Computation:
– let C be integer representation of ciphertext

C = (Mk)%n

• Output: integer C
– ciphertext or encrypted message

2

RSA algorithm for decryption

• Input: integers d, n, C
– C is integer representation of ciphertext message

• Computation:
– let D be integer representation of decrypted ciphertext

D = (Cd)%n

• Output: integer D
– decrypted message

This seems hard …

• How to find big primes?
• How to find mod inverse?
• How to compute greatest common divisor?
• How to translate text input to numeric values?
• Most importantly: RSA manipulates big numbers

– Java integers are of limited size
– how can we handle this?

• Two key items make the implementation easier
– understanding the math
– Java’s BigInteger class

What is a BigInteger?

• Java class to represent and perform operations on
integers of arbitrary precision

• Provides analogues to Java’s primitive integer
operations, e.g.
– addition and subtraction
– multiplication and division

• Along with operations for
– modular arithmetic
– gcd calculation
– generation of primes

• http://java.sun.com/j2se/1.4.2/docs/api/

Using BigInteger

• If we understand what mathematical computations are
involved in the RSA algorithm, we can use Java’s
BigInteger methods to perform them

• To declare a BigInteger named B
BigInteger B;

• Predefined constants
BigInteger.ZERO
BigInteger.ONE

Randomly generated primes

BigInteger probablePrime(int b, Random rng)

• Returns random positive BigInteger of bit length b
that is “probably” prime
– probability that BigInteger is not prime < 2-100

• Random is Java’s class for random number generation
• The following statement

Random rng = new Random();
creates a new random number generator named rng

probablePrime

• Example: randomly generate two BigInteger primes
named p and q of bit length 32 :

/* create a random number generator */
Random rng = new Random();

/* declare p and q as type BigInteger */
BigInteger p, q;

/* assign values to p and q as required */
p = BigInteger.probablePrime(32, rng);
q = BigInteger.probablePrime(32, rng);

3

Integer operations

• Suppose have declared and assigned values for p and q
and now want to perform integer operations on them
– use methods add, subtract, multiply, divide
– result of BigInteger operations is a BigInteger

• Examples:
BigInteger w = p.add(q);
BigInteger x = p.subtract(q);
BigInteger y = p.multiply(q);
BigInteger z = p.divide(q);

Greatest common divisor

• The greatest common divisor of two numbers x and y is
the largest number that divides both x and y
– this is usually written as gcd(x,y)

• Example: gcd(20,30) = 10
– 20 is divided by 1,2,4,5,10,20
– 30 is divided by 1,2,3,5,6,10,15,30

• Example: gcd(13,15) = 1
– 13 is divided by 1,13
– 15 is divided by 1,3,5,15

• When the gcd of two numbers is one, these numbers are
said to be relatively prime

Euler’s Phi Function

• For a positive integer n, φ(n) is the number of positive
integers less than n and relatively prime to n

• Examples:
– φ(3) = 2 1,2
– φ(4) = 2 1,2,3 (but 2 is not relatively prime to 4)
– φ(5) = 4 1,2,3,4

• For any prime number p,
φ(p) = p-1

• For any integer n that is the product of two distinct
primes p and q,

φ(n) = φ(p)φ(q)
= (p-1)(q-1)

Relative primes

• Suppose we have an integer x and want to find an odd
integer z such that
– 1 < z < x, and
– z is relatively prime to x

• We know that x and z are relatively prime if their
greatest common divisor is one
– randomly generate prime values for z until gcd(x,z)=1
– if x is a product of distinct primes, there is a value of z

satisfying this equality

Relative BigInteger primes

• Suppose we have declared a BigInteger x and
assigned it a value

• Declare a BigInteger z
• Assign a prime value to z using the probablePrime

method
– specifying an input bit length smaller than that of x

gives a value z<x
• The expression

(x.gcd(z)).equals(BigInteger.ONE)
returns true if gcd(x,z)=1 and false otherwise

• While the above expression evaluates to false, assign a
new random to z

Multiplicative identities and inverses

• The multiplicative identity is the element e such that
e * x = x * e = x

for all elements xœX

• The multiplicative inverse of x is the element x-1 such that
x * x-1 = x-1 * x = 1

• The multiplicative inverse of x mod n is the element x-1

such that
(x * x-1) mod n = (x-1 * x) mod n = 1

– x and x-1 are inverses only in multiplication mod n

4

modInverse

• Suppose we have declared BigInteger variables x, y
and assigned values to them

• We want to find a BigInteger z such that
(x*z)%y =(z*x)%y = 1

that is, we want to find the inverse of x mod y and
assign its value to z

• This is accomplished by the following statement:

BigInteger z = x.modInverse(y);

Implementing RSA key generation

• We know have everything we need to implement the
RSA key generation algorithm in Java, so let’s get
started …

