Computer Science 104 Duke University

X86 Assembly Programming
with GNU assembler

Lecture 7

Instructor:
Alvin R. Lebeck

Some Slides based on those from
Randy Bryant and Dave O’Hallaron

Computer Science 104 Duke University

m Homework #3 Due Monday Feb 14 11:59pm
m Reading: Chapter 3
m Note about pointers: You must explicitly initialize/set to NULL

Assembly Programming (x86)

m Quick Instruction Review

m Assembly Language

m Simple one function program
m High level constructs (control)
m Interfacing to a C program

m Procedure Calling Conventions

Some Arithmetic and Logical Operations

m Two Operand Instructions:

" Format Computation
= addl Src,Dest Dest = Dest + Src
= subl Src,Dest Dest = Dest - Src
= imull Src,Dest Dest = Dest * Src
= sall Src,Dest Dest = Dest << Src Also called shll
= sarl Src,Dest Dest = Dest >> Src Arithmetic
= shrl Src,Dest Dest = Dest >> Src Logical
= xorl Src,Dest Dest = Dest ” Src
= andl Src,Dest Dest = Dest & Src
= orl Src,Dest Dest = Dest | Src

m Watch out for argument order!
m No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

m One Operand Instructions

= incl Dest Dest = Dest + 1
= decl Dest Dest = Dest - 1
= negl Dest Dest = - Dest
= notl Dest Dest = ~Dest

m See book for more instructions
m Note: suffix “I” is for 32-bit values, “b” for byte, “w” for 16-bit

Address Computation Instruction

m leal Src,Dest
® Srcis address mode expression
= Set Dest to address denoted by expression

m Uses
® Computing addresses without a memory reference
= E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8
m Example Converted to ASM by compiler:
int mull2 (int x)

leal (%eax,%eax,2), %eax ;t <- x+x*2

{ sall $2, %eax ;return t<<2
return x*12;

}

Condition Codes (Implicit Setting)

m Single bit registers
® CF Carry Flag (for unsigned) SF Sign Flag (for signed)
= 7F Zero Flag OF Overflow Flag (for signed)

m Implicitly set (think of it as side effect) by arithmetic operations
m Not set by lea instruction

m Explicitly set by compare and test instructions

m Allow for conditional change of PC via jump instructions

Procedure Control Flow

m Use stack to support procedure call and return
m Procedure call: call label

® Push return address on stack
= Jump to label

m Return address:

= Address of the next instruction right after call

= Example from disassembly

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

® Return address = 0x8048553

m Procedure return: ret
® Pop address from stack
® Jump to address

X86 w/ Gnu Assembly Language

m One instruction per line.

m Numbers are base-10 integers or Hex w/ leading Ox.

m Identifiers: alphanumeric, _, . string starting in a letter or _

m Labels: identifiers starting at the beginning of a line followed by

“.n

m Comments: everything following # till end-of-line.
m Directives: convey information to the assembler
m Instruction format: Space and “,” separated fields.

= [Label:] <op> src, dest [# comment]
® [Label:] .Directive [argl], [arg2], ...

Assembly Language (cont.)

m Directives: tell the assembler what to do...

o n

m Format “.”<string> [argl], [arg2] ...

m Examples
.data [address] # start a data segment. [optional begining address]
.text [address] # start a code segment.
.globl # declare a label externally visible
.ascii <string> # store a string in memory.
.asciiz <string> # store a null terminated string in memory
Jongwil,w2,...,wn #store n 32-bit values in memory.

.alignn # align segment on 2" byte boundary.
8
A simple function
m Add two numbers together x and y
.text # declare text segment
.globl _sum # declare function name for external call
_sum: # label for function
movl x, %edx # load M[x] into %edx
movl y, %eax # load M[y] into %eax
addl %edx, %eax # %eax = %eax + %edx
movl %eax, x # store %eax into M[x]
ret # return to calling function
.data # declare data segment
x: .long 10 # initialize x to 10
y: .long 2 # initialize y to 10
9

Typical Code Segments-- IF

if (x I=y)
X=X+Y;
y=2;

m General Rule is to invert condition
if (x ==y) goto skip
X=X+y
skip:y=2;
m Assume %ecx contains x and %edx contains y
cmpl %ecx, %edx
je skip
addl %edx, %ecx
skip:

movl $2, %edx

10

Typical Code Segments— IF-else
if (x 1=) m Assume %ecx contains x and %edx contains y

X=X+y, cmpl %ecx, %edx # compute condition
else jell # checking !(condition)

X=X-Y, subl %edx, %ecx Hx=x-y
jmp done
L1:

m Invert condition check and use goto addl %edx, %ecx Hx=x-y
if (x ==y) goto L1 done:

X=x-y;

goto done
Ll: x=x+Yvy;

done:

The C code

int sum()}{
inti;
int sum =0;
for(i=0; i <= 100; i++)
sum =sum +i*i;

return(sum); // put sum into %eax

Let’s write the assembly ... :)

Sum array

Task: sum together the integers stored in memory
text

.globl _sum

_sum:

Fill in what goes here

.data
num_array: .long 35, 16, 42, 19, 55, 91, 24, 61, 53

Assembly Programming in Eclipse

m Add source file of type <none>
m Name source file with .S suffix (must be capital S)

m We are using 32-bit (IA32), so we need to tell compiler &
assembler
= Project->properties->C/C++ Build->Settings
= MAC OS C Linker: add —m32 after gcc
= GCC Assembler: add —arch i386 after as
= GCC C Compiler: add —m 32 after gcc

Calling an Assembly Function from C

m Main in normal C file
m Declare function using “extern”

= E.g., extern int foo();
® Foo is our assembly function in a .S file
m Function name (label) must start with _
= E.g., foo:
= C program uses foo (compiler adds the _)

m Examples in Eclipse

Computer Science 104 Duke University

Review: Procedure Call and Return

0x10000 [movl $43, %ecx
0x10004 [movl $2, %edx

int equal(int a1, int a2) {

int tsame; 0x10008 | call 0x30408
tsame =0;
) 0x30408 | movl $0, %eax
if (a1 == a2) 0x3040¢ | cmpl %ecx, %edx
tsame =1; 0x30410 | jne 0x30418
return(tsame); 0x30414 |movl $1, %eax
0x30418 | addl %edx, %ecx
} 0x3041c | ret
main() PC M[%esp]
{ 0x10000 ??

0x10004 ??

int x,y,same; 010008 oo

x=43; 0x30408 0x1000c
y=2; 0x3040c 0x1000c
same = equal(x,y); 0x30410 0x1000c

0x30414 0x1000c
0x30418 0x1000c
} 0x3041c 0x1000c
0x1000c 2°?

// other computation

Procedure Call GAP
ISA Level

m call and return instructions
CLevel
m Local Name Scope
= change tsame to same
m Recursion
m Arguments/parameters and Return Value (functions)
Assembly Level

m Must bridge gap between HLL and ISA
m Supporting Local Names

m Passing Arguments/Parameters (arbitrary number?
m What data structure?

Procedure Call (Stack) Frame

m Procedures use a frame in the stack to:

® Hold values passed to procedures as arguments.

= Save registers that a procedure may modify, but which the procedure’s caller does
not want changed.

= To provide space for local variables.
(variables with local scope)

= To evaluate complex expressions.

20

IA32/Linux Stack Frame

m Current Stack Frame (“Top” to Bottom)

= “Argument build:”
Parameters for function about to call

Caller
Frame

" Local variables

If can’t keep in registers Arguments

= Saved register context Frame pointer \. |Return Addr
sebp— | 0OId %ebp

= Old frame pointer

Saved

m Caller Stack Frame Reg'fters
® Return address ezl

= Pushed by call instruction Variables

= Arguments for this call . P
Stack pointer Build

Sesp—

21

Computer Science 104 Duke University

Register Saving Conventions

m When procedure yoo calls who:
® yoo is the caller
® who is the callee

m Can Register be used for temporary storage?

yoo: who:
[] [] [] L] L] L]
movl $15213, %edx movl 8 (%ebp), %edx
call who addl $18243, %edx
addl %edx, %eax ° o o
e o o ret
ret t

® This could be trouble => something should be done!

= Need some coordination

22

Computer Science 104 Duke University

Register Saving Conventions

m When procedure yoo calls who:
= yoo is the caller
® who is the callee

m Can Register be used for temporary storage?

m Conventions

= “Caller Save”
= Caller saves temporary values in its frame before the call

= “Callee Save”
= Callee saves temporary values in its frame before using

23

IA32/Linux+Windows Register Usage

m %eax, %edx, %ecx

= (Caller saves prior to call if values are —
used later Teax |
Caller-Save 5 |
Temporaries sedx
m %eax R |
. . e X
= also used to return integer or pointer = o€C
value S cabx |
Callee-Save 5 - |
H eSSl
m %ebx, %esi, %edi Temporaries
. sedi |
" (Callee saves if wants to use them
| [esp |
Special
m %esp, %ebp Sebp |

= special form of callee save

= Restored to original values upon exit
from procedure

24

IA32/GCC Procedure Calling Conventions

Calling Procedure

m Step-1: Save caller-saved registers

= Save registers %eax, %ecx, %edx if they contain live values at the call site.

m Step-2: Setup the arguments:

= Pysh arguments onto the stack in reverse order

m Step-3: Execute a call instruction.

25

IA32/GCC Calling Conventions (cont.)

Called Routine

m Step-1: Update the frame pointer
pushl %ebp
movl %esp, %ebp

m Step-2: Allocate space for frame

® Subtract the frame size from the stack pointer
subl S<frame-size>, %esp

= Space is for local variables and saved registers
= May often allocate more space than necessary.

m Step-3: Save callee-saved registers in the frame.
= Registers %ebx, %esi, %edi are saved if they are used.

26

IA32/GCC Calling Conventions (cont.)

On return from a call

m Step-1: Put returned value in register %eax.
(if value is returned)
m Step-2: Restore callee-saved registers.
= Restore %ebx, %esi, %edi if needed
m Step-3: “Pop” the stack
leave
= Equivalent to
movl %ebp, %esp
popl %ebp
m Step-4: Return
" ret %eip = M[%esp]; %esp = %esp -4

27

C Function call with one parameter

#include <stdio.h>

#include <stdlib.h>

// declare the function as externally defined

// computes sum of elements O to i of an array defined in sum_array

extern int sum_array(int i);

int main(void) {
int result;
result = sum_array(7);
printf("Array sum = %d\n",result);
return EXIT_SUCCESS;

28

Sample Function

.text # declare the text segment
.globl _sum_array # declare the function label (note the _ in this label)
the C program calls sum(int)

_sum_array:

pushl %ebp # save old frame pointer
movl %esp, %$ebp # set new stack pointer
movl 8(%ebp), %eax # read argl from stack, put into %eax
leal num array, %edx # load address of num array into %edx (p = &num_array)
leal (%edx,%eax,4), %ecx # load address of num array+arg into %ecx
movl $0, %eax # move 0 to running sum (%eax)
loop: # label for loop structure
addl (%edx), %eax # add value *p to running sum (%eax)
addl $4, %edx # increment pointer in memory (p++)
cmpl %ecx, %edx # compare pointer to termination (p < (num_array+argl))
jl loop # jump to loop if (p < (num_array+argl))
leave # prepare stack for return (movl %ebp, %esp; popl %ebp)
ret # return to calling routine (result is in %eax)
.data # declare data segment and array with 9 32-bit integers

num_array: .long 35, 16, 42, 19, 55, 91, 24, 61, 53

29

x86 Assembly Programming

m Assembly Language
= Text file (with .S for eclipse)
® One instruction per line
= Labels, directives, etc.

m High-level Constructs
= |f
= |f-else
" Loops
= Memory (array) accesses
m Calling assembly from C
m Calling Conventions
m Examples in “docs” section of course web site

m Next time recursion & pointers!

30

