
9/5/2011

1

In this class…

We’re going to ask you to work with others on
the same problem. So if you’d like to work on
the earlier problems from Set 1, sit in the first
2 rows. If you’d like to work on the later
problems from Set 1 (slightly more difficult),
sit behind the first 2 rows.

CS149s: Graphs 1

Graphs

• A set of vertexes V

• A set of edges E

• Directed/undirected

• Weighted/unweighted

Adjacency Matrix

• Basically a 2 dimensional array
M[x,y] is 1 if there is an edge
between X and Y, 0 otherwise

• Can also be used for weighted
graphs (but be careful if “0” is a
valid weight)

• Might be too large if there are a
lot of vertexes

//v is number of vertexes
//adj matrix version
int[][] g1 = new int[V][V];

//add a directed edge between 12 and 13
g1[12][13] = 1;
//iterate over all the neighbors of 7
for(int i = 0; i < V; i++)

if(g1[7][i] != 0)
//do whatever

9/5/2011

2

Hybrid Adjacency List

• Array/List of vertexes, list of adjacent vertexes

• Can be used if you don’t know V up front

• Can be used on weighted graphs too (you’d use a Map e.g.
ArrayList<Map<Integer,Integer>>)

//hybrid adjacency list version
ArrayList<List<Integer>> g2 = new ArrayList<List<Integer>>();
//initialize each list
for(int i = 0; i < V; i++)

g2.add(new LinkedList<Integer>());

//add a directed edge between 12 and 13
g2.get(12).add(13);
//iterate over all the neighbors of 7
for(int adj : g2.get(7))

//do whatever

Depth First Search

// you have to be careful to initialize this at the right time

HashSet<Integer> discovered = new HashSet<Integer>();

public void doDFS(int[][] g, int cur) {

discovered.add(cur);

// in real code, you'd replace this print with doing

// whatever processing your problem needs

System.out.println("Visiting " + cur);

// for each adjacent node

for (int adj = 0; adj < g[cur].length; adj++) {

if (g[cur][adj] == 0)

// this means the edge does not exist

continue;

if (discovered.contains(adj))

// already in the queue

continue;

doDFS(g, adj);

}

}

Breadth First Search
public void doBFS(int[][] g, int startingNode) {

List<Integer> q = new LinkedList<Integer>();

HashSet<Integer> discovered = new HashSet<Integer>();

q.add(startingNode);

discovered.add(startingNode);

while (!q.isEmpty()) {

int cur = q.remove(0);

// in real code, you'd replace this print with doing

// whatever processing your problem needs

System.out.println("Visiting " + cur);

// for each adjacent node

for (int adj = 0; adj < g[cur].length; adj++) {

if (g[cur][adj] == 0)

// this means the edge does not exist

continue;

if (discovered.contains(adj))

// already in the queue

continue;

q.add(adj);

discovered.add(adj);

}

}

}

For Next Week

• Do as many problems as you can from
Problem Set 1

• Do 1 Problem from Problem Set 2 (for
beginners, we recommend the 1st one which
uses Prim’s minimum spanning tree algorithm)

