
COMPSCI 6 6.1

Inheritance and Interfaces

Inheritance models an "is-a" relationship

A dog is a mammal, an TreeSet is a Set which is a
Collection, a square is a shape, …

Write general programs to understand the abstraction,
advantages?

void doShape(Shape s) {

 System.out.println(s.area());

 System.out.println(s.perimeter());

 s.expand(2.0);

}

But a dog is also a quadruped, how can we deal with this?

COMPSCI 6 6.2

Single inheritance in Java

A class can extend only one class in Java

All classes extend Object --- it's the root of the inheritance
hierarchy tree

Can extend something else (which extends Object), why?

Why do we use inheritance in designing programs/systems?

Facilitate code-reuse (what does that mean?)

Ability to specialize and change behavior

• If I could change how method foo() works, bar() is ok

Design methods to call ours, even before we implement

• Hollywood principle: don't call us, …

COMPSCI 6 6.3

Guidelines for using inheritance

Create a base/super/parent class that specifies the behavior that will
be implemented in subclasses

Subclasses specify inheritance using extends Base

Inheritance models “is-a” relationship, a subclass is-a parent-class,
can be used-as-a, is substitutable-for

Standard examples include animals and shapes

OOP Terminology

Hierarchy: classes are arranged like a tree, with superclasses
appearing above its subclasses

Overriding: When an object receives a message, it checks its own
methods first before consulting its superclass.

Polymorphism: method binding is determined at run-time

COMPSCI 6 6.4

Student behavior

public class Student
{
 private String myName;
 protected int myEnergy;

 public Student(String name)

 public String getName()
 public int getEnergy()

 public boolean isAlive()
 public void eat()
 public void work()
 public void live()
 // …

COMPSCI 6 6.5

Implementation of behavior

public void sleep()

{

 myEnergy += 10;

 System.out.println("Zzzzzzzzzzzzz, resting sleep”);

}

public void live()

{

 eat();

 work();

 sleep();

}

COMPSCI 6 6.6

See Student.java, School.java

How do subclass objects call parent class code, see
DukeStudent class in School.java

super syntax

Why is base class data protected rather than private?

Must be accessed directly in subclasses, why?

Not ideal, try to avoid state in base/parent class: trouble

• What if derived class doesn’t need data?

COMPSCI 6 6.7

Difference in behavior?

What’s a field and
what’s a method?

tires on car?

doors on car?

How student lives?

Where does name of
school belong? What
about energy increment?

What’s problem with
hierarchy here?

NCState student?

Student

DukeStudent UNCStudent

CosmicDukeStudent CosmicUNCStudent

COMPSCI 6 6.8

Problems with inheritance

Consider the student example and burrito eating

CosmicStudent is a subclass of DukeStudent

• What behavior changes in the new subclass?

What about a UNCStudent eating cosmic cantina food?

• Can we have CosmicDukeStudent and CosmicUNCStudent?

• Problems with this approach?

Alternative to inheritance: use delegation (aka layering,
composition)

Just like myEnergy is a state variable with different
values, make myEater a state variable with different values

Delegate behavior to another object rather than
implementing it directly

COMPSCI 6 6.9

Delegation with school/student

If there's a class Eater, then what instance variable/field will a
Student store to which eating behavior delegated?

public void eat()

{

 myEater.doEat();

}

How is the eater instance variable initialized?

Could we adopt this approach for studying too?

When is this approach better/worse?

COMPSCI 6 6.10

Multiple Interfaces

Classes (and interfaces) can implement multiple interfaces

A dog is a mammal, a quadruped, a pet

How come canine is different?

What behavior do quadrupeds have? Pets have?

An interface specifies the name (and signature) of methods

No implementation, no state/fields

Yes for constants

COMPSCI 6 6.11

Comparable and Comparator

Both are interfaces, there is no default implementation

Contrast with .equals(), default implementation?

Contrast with .toString(), default?

Where do we define a Comparator?

In its own .java file, nothing wrong with that

Private, used for implementation and not public behavior

• Use a nested class, then decide on static or non-static

• Non-static is part of an object, access inner fields

How do we use the Comparator?

Sort, Sets, Maps (in the future)

