Inheritance and Interfaces

® Inheritance models an "is-a" relationship

» A dog isamammal, an TreeSet is a Set which is a
Collection, a square is a shape, ...

® Write general programs to understand the abstraction,
advantages?

void doShape(Shape s) {
System.out.printIn(s.area());
System.out.printin(s.perimeter());
s.expand(2.0);

}

® Butadog isalso a quadruped, how can we deal with this?

COMPSCI 6 6.1

Single inheritance in Java

® A class can extend only one class in Java

> All classes extend Object --- it's the root of the inheritance
hierarchy tree

» Can extend something else (which extends Object), why?

® Why do we use inheritance in designing programs/systems?
> Facilitate code-reuse (what does that mean?)
> Ability to specialize and change behavior
= If I could change how method foo() works, bar() is ok
> Design methods to call ours, even before we implement
= Hollywood principle: don't call us, ...

COMPSCI 6 6.2

Guidelines for using inheritance

® Create a base/super/parent class that specifies the behavior that will
be implemented in subclasses

» Subclasses specify inheritance using extends Base

® Inheritance models “is-a” relationship, a subclass is-a parent-class,
can be used-as-a, is substitutable-for

» Standard examples include animals and shapes
® OOP Terminology

» Hierarchy: classes are arranged like a tree, with superclasses
appearing above its subclasses

» Overriding: When an object receives a message, it checks its own
methods first before consulting its superclass.

» Polymorphism: method binding is determined at run-time

COMPSCI 6 6.3

Student behavior

public class Student

{
private String myName;
protected int myEnergy;

public Student(String name)

public String getName()
public int getEnergy()

public boolean isAlive()
public void eat()

public void work(Q)
public void live(Q)

// .

COMPSCI 6 6.4




Implementation of behavior

public void sleep()

{
myEnergy += 10;
System.out.printIn("Zzzzzzzzzzzzz, resting sleep™);

}

public void live(Q)

{
eat();
work();
sleep();
}

See Student.java, School.java

® How do subclass objects call parent class code, see
DukeStudent class in School.java

> super syntax

® Why is base class data protected rather than private?
» Must be accessed directly in subclasses, why?
> Not ideal, try to avoid state in base/parent class: trouble
= What if derived class doesn’t need data?

COMPSCI 6 6.6

Difference in behavior?

® What’s a field and
what’s a method?

> #tireson car?
> # doors on car?
> How student lives?

Student

DukeStudent UNCStudent

® Where does name of \

school belong? What CosmicDukeStudent

A CosmicUNCStudent
about energy increment?

® What's problem with
hierarchy here?

> NCState student?

COMPSCI 6 6.7

Problems with inheritance

® Consider the student example and burrito eating
» CosmicStudent is a subclass of DukeStudent
= What behavior changes in the new subclass?
» What about a UNCStudent eating cosmic cantina food?
= Can we have CosmicDukeStudent and CosmicUNCStudent?
= Problems with this approach?

® Alternative to inheritance: use delegation (aka layering,
composition)
> Just like myEnergy is a state variable with different
values, make myEater a state variable with different values

» Delegate behavior to another object rather than
implementing it directly

COMPSCI 6 6.8




Delegation with school/student

o Ifthere's a class Eater, then what instance variable/field will a
Student store to which eating behavior delegated?

public void eat()
{

}

myEater .doEat();

» How is the eater instance variable initialized?
» Could we adopt this approach for studying too?
> When is this approach better/worse?

COMPSCI 6 6.9

Multiple Interfaces

® Classes (and interfaces) can implement multiple interfaces
» A dog is a mammal, a quadruped, a pet
» How come canine is different?
> What behavior do quadrupeds have? Pets have?

® An interface specifies the name (and signature) of methods

> No implementation, no state/fields
> Yes for constants

COMPSCI 6 6.10

Comparable and Comparator

® Both are interfaces, there is no default implementation
> Contrast with .equals(), default implementation?
» Contrast with .toString(), default?

® Where do we define a Comparator?
> Inits own .java file, nothing wrong with that
» Private, used for implementation and not public behavior
« Use a nested class, then decide on static or non-static
= Non-static is part of an object, access inner fields

® How do we use the Comparator?
> Sort, Sets, Maps (in the future)

COMPSCI 6 6.11




