Game theory \& Linear Programming

Steve Gu

Mar 28, 2008

Outline

- Background
- Nash Equilibrium
- Zero-Sum Game
- How to Find NE using LP?
- Summary

Background: History of Game Theory

- John Von Neumann 1903-1957.
- Book - Theory of Games and Economic Behavior.
- John Forbes Nash 1928 -
- Popularized Game Theory with his Nash Equilibrium (Nobel prize).

Background: Game theory

Background: Prison's Dilemma

Given you're Dave, what's the best choice?

Copyright 2005 - Investopedia.com

Nash Equilibrium

Competition game

	Plgyer 2 chooses	Player 2 chooses ' 1	Player 2 chooses '2'	Plgyer 2 chooses ' 3 '
Player 1 chooses ' 0 '	0.0	2. -2	2. -2	2. -2
$\begin{gathered} \text { Plgyer } 1 \\ \text { chooses '1 } \end{gathered}$	-2.2	1. 7	$\text { 3. }-7$	3. - 7
Player 1 chooses '2'	$-2,2$	-7.3	22	4.0
Player 1 chooses '3'	$-2,2$	-7. 3	0.4	3. 3

A competition gome
A set of strategies is a Nash equilibrium if no player can do better by changing his or her strategy

Nash Equilibrium (Cont')

- Nash showed (1950), that Nash equilibria (in mixed strategies) must exist for all finite games with any number of players.
- Before Nash's work, this had been proven for two-player zero-sum games (by John von Neumann and Oskar Morgenstern in 1947).
- Today, we're going to find such Nash equilibria using Linear Programming for zero-sum game

Zero-Sum Game

- A strictly competitive or zero-sum game is a 2-player strategic game such that for each action $a \in A$, we have $u_{1}(a)+u_{2}(a)=0$. (u represents for utility) -What is good for me, is bad for my opponent and vice versa

	A	B	C
J	$30 .-30$	-10.10	$20 .-20$
2	$10 .-10$	$20 .-20$	-20.20

Zero-Sum Game

- Mixed strategy
- Making choice randomly obeying some kind of probability distribution
- Why mixed strategy? (\rightarrow Nash Equilibrium)
- E.g. : $P(1)=P(2)=0.5 ; P(A)=P(B)=P(C)=1 / 3$

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
\boldsymbol{y}	$30 .-30$	-10.10	$20 .-20$
2	$10 .-10$	$20 .-20$	-20.20

Solving Zero-Sum Games

- Let $A_{1}=\left\{a_{11}, \ldots, a_{1 n}\right\}, A_{2}=\left\{a_{21}, \ldots, a_{2 m}\right\}$
- Player 1 looks for a mixed strategy p
$-\sum_{i} p\left(a_{1 i}\right)=1$
$-p\left(a_{1 i}\right) \geq 0$
$-\sum_{i} p\left(a_{1 i}\right) \cdot u_{1}\left(a_{1 i}, a_{2 j}\right) \geq r$ for all $j \in\{1, \ldots, m\}$
- Maximize r!
- Similarly for player 2.

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
\boldsymbol{J}	$30,-90$	-10.10	$20 .-20$
\boldsymbol{Z}	$10,-10$	$20,-20$	-20.20

Solve using Linear Programming

- What are the unknowns?
- Strategy (or probability distribution): p
- $p\left(a_{11}\right), p\left(a_{12}\right), \ldots, p\left(a_{1 n-1}\right), p\left(a_{1 n}\right) \sim n$ numbers
- Denoted as $p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}$
- Optimum Utility or Reward: r
- Stack all unknowns into a column vector
- Goal: maximize: $f^{T} x$ where $f=\left(\begin{array}{lllll}1 & 0 & \cdots & 0 & 0\end{array}\right)^{T}$

Solve Zero-Sum Game using LP

- What are the constraints?

$$
x=\left(\begin{array}{c}
r \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1} \\
p_{n}
\end{array}\right) \quad \begin{aligned}
& \left.\sum_{i=1}^{n} p_{i}=1 \Rightarrow \begin{array}{lll}
0 & 1 & \cdots
\end{array}\right) x=1 \\
& \sum_{i=1}^{n} p_{i} u_{i j} \geq r, \text { for all } j \in\{1,2, \ldots, m\}, \text {,i.e. } \\
& r-u_{11} p_{1}-u_{21} p_{2}-\ldots-u_{n 1} p_{n} \leq 0 \\
& r-u_{12} p_{1}-u_{22} p_{2}-\ldots-u_{n 2} p_{n} \leq 0 \\
& \ldots \\
& r-u_{1 n} p_{1}-u_{2 n} p_{2}-\ldots-u_{n b} p_{n} \leq 0
\end{aligned}
$$

Solve Zero-Sum Game using LP

$$
\begin{aligned}
& r-u_{11} p_{1}-u_{21} p_{2}-\ldots-u_{n 1} p_{n} \leq 0 \\
& r-u_{12} p_{1}-u_{22} p_{2}-\ldots-u_{n 2} p_{n} \leq 0 \\
& \ldots \\
& r-u_{1 n} p_{1}-u_{2 n} p_{2}-\ldots-u_{n b} p_{n} \leq 0
\end{aligned}
$$

$$
\left(1 ;-U^{T}\right) x \leq 0 \Rightarrow A x \leq 0
$$

Let: $A_{e}=(0,1, \ldots, 1)$

$$
\begin{aligned}
& A_{i=}=\left(1 ;-U^{\top}\right) \\
& f=(1,0, \ldots, 0)^{\top}
\end{aligned}
$$

The LP is:
maximize $f^{\top} x$
subject to:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ie}} \mathrm{x}<=0 \\
& \mathrm{~A}_{\mathrm{e}} \mathrm{x}=1
\end{aligned}
$$

Summary

- Zero-Sum Game \rightarrow Mixed Strategy \rightarrow NE
- Connections with Linear Programming

Thanks
 Q\&A

