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10 The Singular Value Decomposition
In section 9, we saw that a matrix transforms vectors in its domain into vectors in its range (column
space), and vectors in its null space into the zero vector. No nonzero vector is mapped into the
left null space, that is, into the orthogonal complement of the range. In this section, we make
this statement more specific by showing how unit vectors45 in the rowspace are transformed by
matrices. This describes the action that a matrix has on the magnitudes of vectors as well. To this
end, we first need to introduce the notion of orthogonal matrices, and interpret them geometrically
as transformations between systems of orthonormal coordinates. We do this in section 10. Then, in
section 10, we use these new concepts to introduce the all-important concept of the Singular Value
Decomposition (SVD). The chapter concludes with some basic applications and examples.

Orthogonal Matrices
Let S be an n-dimensional subspace of Rm (so that we necessarily have n ≤ m), and let v1, . . . , vn

be an orthonormal basis for S. Consider a point P in S. If the coordinates of P in Rm are collected
in an m-dimensional vector

p =




p1
...

pm


 ,

and since P is in S , it must be possible to write p as a linear combination of the vjs. In other
words, there must exist coefficients

q =




q1
...
qn




such that
p = q1v1 + . . . + qnvn = V q

where
V =

[
v1 · · · vn

]

is an m× n matrix that collects the basis for S as its columns. Then for any i = 1, . . . , n we have

vT
i p = vT

i

n∑
j=1

qjvj =
n∑

j=1

qjvT
i vj = qi ,

since the vj are orthonormal. This is important, and may need emphasis:

If

p =
n∑

j=1

qjvj

45Vectors with unit norm.
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and the vectors of the basis v1, . . . , vn are orthonormal, then the coefficients qj are
the signed magnitudes of the projections of p onto the basis vectors:

qj = vT
j p . (66)

In matrix form,
q = V T p . (67)

Also, we can collect the n2 equations

vT
i vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V T V = I (68)

where I is the n×n identity matrix. A matrix V that satisfies equation (68) is said to be orthogonal.
Thus, a matrix is orthogonal if its columns are orthonormal. Since the left inverse of a matrix V is
defined as the matrix L such that

LV = I , (69)

comparison with equation (68) shows that the left inverse of an orthogonal matrix V exists, and is
equal to the transpose of V .

Of course, this argument requires V to be full rank, so that the solution L to equation (69) is
unique. However, V is certainly full rank, because it is made of orthonormal columns.

Notice that V R = I cannot possibly have a solution when m > n, because the m×m identity
matrix has m linearly independent 46 columns, while the columns of V R are linear combinations
of the n columns of V , so V R can have at most n linearly independent columns.

Of course, this result is still valid when V is m × m and has orthonormal columns, since
equation (68) still holds. However, for square, full-rank matrices (r = m = n), the distinction
between left and right inverse vanishes. In fact, suppose that there exist matrices L and R such that
LV = I and V R = I . Then L = L(V R) = (LV )R = R, so the left and the right inverse are the
same. Thus, for square orthogonal matrices, V T is both the left and the right inverse:

V T V = V V T = I ,

and V T is then simply said to be the inverse of V :

V T = V −1 .

Since the matrix V V T contains the inner products between the rows of V (just as V T V is
formed by the inner products of its columns), the argument above shows that the rows of a square
orthogonal matrix are orthonormal as well. We can summarize this discussion as follows:

46Nay, orthonormal.
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Theorem 10.1 The left inverse of an orthogonal m × n matrix V with m ≥ n exists and is equal
to the transpose of V :

V T V = I .

In particular, if m = n, the matrix V −1 = V T is also the right inverse of V :

V square ⇒ V −1V = V T V = V V −1 = V V T = I .

Sometimes, when m = n, the geometric interpretation of equation (67) causes confusion,
because two interpretations of it are possible. In the interpretation given above, the point P remains
the same, and the underlying reference frame is changed from the elementary vectors ej (that is,
from the columns of I) to the vectors vj (that is, to the columns of V ). Alternatively, equation (67)
can be seen as a transformation, in a fixed reference system, of point P with coordinates p into a
different point Q with coordinates q. This, however, is relativity, and should not be surprising: If
you spin clockwise on your feet, or if you stand still and the whole universe spins counterclockwise
around you, the result is the same.47

Consistently with either of these geometric interpretations, we have the following result:

Theorem 10.2 The norm of a vector x is not changed by multiplication by an orthogonal matrix
V :

‖V x‖ = ‖x‖ .

Proof.
‖V x‖2 = xT V T V x = xT x = ‖x‖2 .

∆

We conclude this section with an obvious but useful consequence of orthogonality. In section
9 we defined the projection p of a vector b onto another vector c as the point on the line through
c that is closest to b. This notion of projection can be extended from lines to vector spaces by the
following definition: The projection p of a point b ∈ Rn onto a subspace C is the point in C that
is closest to b.

Also, for unit vectors c, the projection matrix is ccT (theorem 9.7), and the vector b − p is
orthogonal to c. An analogous result holds for subspace projection, as the following theorem
shows.

Theorem 10.3 Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto
range(U). Furthermore, the difference vector between b and its projection p onto range(U) is
orthogonal to range(U):

UT (b− p) = 0 .

47At least geometrically. One solution may be more efficient than the other in other ways.
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Proof. A point p in range(U) is a linear combination of the columns of U :

p = Ux

where x is the vector of coefficients (as many coefficients as there are columns in U ). The squared
distance between b and p is

‖b− p‖2 = (b− p)T (b− p) = bT b + pT p− 2bT p = bT b + xT UT Ux− 2bT Ux .

Because of orthogonality, UT U is the identity matrix, so

‖b− p‖2 = bT b + xT x− 2bT Ux .

The derivative of this squared distance with respect to x is the vector

2x− 2UT b

which is zero iff
x = UT b ,

that is, when
p = Ux = UUT b

as promised.
For this value of p the difference vector b− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUT b) = UT b− UT b = 0 .

∆

The Singular Value Decomposition
The following statement draws a geometric picture underlying the concept of Singular Value De-
composition using the concepts developed in the previous Section:

An m×n matrix A of rank r maps the r-dimensional unit hypersphere in rowspace(A)
into an r-dimensional hyperellipse in range(A).

This statement is stronger than saying that A maps rowspace(A) into range(A), because it also
describes what happens to the magnitudes of the vectors: a hypersphere is stretched or compressed
into a hyperellipse, which is a quadratic hypersurface that generalizes the two-dimensional notion
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Figure 32: The matrix in equation (70) maps a circle on the plane into an ellipse in space. The two
small boxes are corresponding points.

of ellipse to an arbitrary number of dimensions. In three dimensions, the hyperellipse is an ellip-
soid, in one dimension it is a pair of points. In all cases, the hyperellipse in question is centered at
the origin.

For instance, the rank-2 matrix

A =
1√
2



√

3
√

3
−3 3
1 1


 (70)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure
32 shows the map

b = Ax .

Two diametrically opposite points on the unit circle are mapped into the two endpoints of the
major axis of the ellipse, and two other diametrically opposite points on the unit circle are mapped
into the two endpoints of the minor axis of the ellipse. The lines through these two pairs of points
on the unit circle are always orthogonal. This result can be generalized to any m× n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cum-
bersome. Instead, we will prove it algebraically by first introducing the existence of the SVD and
then using the latter to prove that matrices map hyperspheres into hyperellipses.

Theorem 10.4 If A is a real m× n matrix then there exist orthogonal matrices

U =
[

u1 · · · um

] ∈ Rm×m

V =
[

v1 · · · vn

] ∈ Rn×n

such that
UT AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .
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Proof. Let x and y be unit vectors in Rn and Rm, respectively, and consider the bilinear form

z = yT Ax .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}

is compact, so that the scalar function z(x, y) must achieve a maximum value on S , possibly at
more than one point 48. Let u1, v1 be two unit vectors in Rm and Rn respectively where this
maximum is achieved, and let σ1 be the corresponding value of z:

max
‖x‖=‖y‖=1

yT Ax = uT
1 Av1 = σ1 .

It is easy to see that u1 is parallel to the vector Av1. If this were not the case, their inner product
uT

1 Av1 could be increased by rotating u1 towards the direction of Av1, thereby contradicting the
fact that uT

1 Av1 is a maximum. Similarly, by noticing that

uT
1 Av1 = vT

1 AT u1

and repeating the argument above, we see that v1 is parallel to AT u1.
By theorems 9.8 and 9.9, u1 and v1 can be extended into orthonormal bases for Rm and Rn,

respectively. Collect these orthonormal basis vectors into orthogonal matrices U1 and V1. Then

UT
1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column of AV1 is Av1 = σ1u1, so the first entry of UT
1 AV1 is uT

1 σ1u1 = σ1,
and its other entries are uT

j Av1 = 0 because Av1 is parallel to u1 and therefore orthogonal, by
construction, to u2, . . . , um. A similar argument shows that the entries after the first in the first row
of S1 are zero: the row vector uT

1 A is parallel to vT
1 , and therefore orthogonal to v2, . . . , vn, so that

uT
1 Av2 = . . . = uT

1 Avn = 0.
The matrix A1 has one fewer row and column than A. We can repeat the same construction on

A1 and write

UT
2 A1V2 = S2 =

[
σ2 0T

0 A2

]

so that [
1 0T

0 UT
2

]
UT

1 AV1

[
1 0T

0 V2

]
=




σ1 0 0T

0 σ2 0T

0 0 A2


 .

This procedure can be repeated until Ak vanishes (zero rows or zero columns) to obtain

UT AV = Σ

48Actually, at least at two points: if uT
1 Av1 is a maximum, so is (−u1)T A(−v1).
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where UT and V are orthogonal matrices obtained by multiplying together all the orthogonal ma-
trices used in the procedure, and

Σ = diag(σ1, . . . , σp) .

Since matrices U and V are orthogonal, we can premultiply the matrix product in the theorem by
U and postmultiply it by V T to obtain

A = UΣV T ,

which is the desired result.
It only remains to show that the elements on the diagonal of Σ are nonnegative and arranged in

nonincreasing order. To see that σ1 ≥ . . . ≥ σp (where p = min(m,n)), we can observe that the
successive maximization problems that yield σ1, . . . , σp are performed on a sequence of sets each
of which contains the next. To show this, we just need to show that σ2 ≤ σ1, and induction will do
the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷT A1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]

= max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT

1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xT v1 = yT u1 = 0

yT Ax ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vector x is equal to the unit vector [0 x̂]T transformed by the orthogonal matrix V1, and is
therefore itself a unit vector. In addition, it is a linear combination of v2, . . . , vn, and is therefore
orthogonal to v1. A similar argument shows that y is a unit vector orthogonal to u1. Because x
and y thus defined belong to subsets (actually sub-spheres) of the unit spheres in Rn and Rm, we
conclude that σ2 ≤ σ1.

The σi are nonnegative because all these maximizations are performed on unit hyper-spheres.
The σis are maxima of the function z(x, y) which always assumes both positive and negative values
on any hyper-sphere: If z(x, y) is negative, then z(−x, y) is positive, and if x is on a hyper-sphere,
so is −x. ∆

We can now review the geometric picture in figure 32 in light of the singular value decomposi-
tion. In the process, we introduce some nomenclature for the three matrices in the SVD. Consider
the map in figure 32, represented by equation (70), and imagine transforming point x (the small
box at x on the unit circle) into its corresponding point b = Ax (the small box on the ellipse). This
transformation can be achieved in three steps (see figure 33):
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1. Write x in the frame of reference of the two vectors v1, v2 on the unit circle that map into the
major axes of the ellipse. There are a few ways to do this, because axis endpoints come in
pairs. Just pick one way, but order v1, v2 so they map into the major and the minor axis, in
this order. Let us call v1, v2 the two right singular vectors of A. The corresponding axis unit
vectors u1, u2 on the ellipse are called left singular vectors. If we define

V =
[

v1 v2

]
,

the new coordinates ξ of x become
ξ = V T x

because V is orthogonal.

2. Transform ξ into its image on a “straight” version of the final ellipse. “Straight” here means
that the axes of the ellipse are aligned with the y1, y2 axes. Otherwise, the “straight” ellipse
has the same shape as the ellipse in figure 32. If the lengths of the half-axes of the ellipse are
σ1, σ2 (major axis first), the transformed vector η has coordinates

η = Σξ

where

Σ =




σ1 0
0 σ2

0 0




is a diagonal matrix. The real, nonnegative numbers σ1, σ2 are called the singular values of
A.

3. Rotate the reference frame in Rm = R3 so that the “straight” ellipse becomes the ellipse in
figure 32. This rotation brings η along, and maps it to b. The components of η are the signed
magnitudes of the projections of b along the unit vectors u1, u2, u3 that identify the axes of
the ellipse and the normal to the plane of the ellipse, so

b = Uη

where the orthogonal matrix
U =

[
u1 u2 u3

]

collects the left singular vectors of A.

We can concatenate these three transformations to obtain

b = UΣV T x

or
A = UΣV T

since this construction works for any point x on the unit circle. This is the SVD of A.
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Figure 33: Decomposition of the mapping in figure 32.

The singular value decomposition is “almost unique”. There are two sources of ambiguity. The
first is in the orientation of the singular vectors. One can flip any right singular vector, provided
that the corresponding left singular vector is flipped as well, and still obtain a valid SVD. Singular
vectors must be flipped in pairs (a left vector and its corresponding right vector) because the singu-
lar values are required to be nonnegative. This is a trivial ambiguity. If desired, it can be removed
by imposing, for instance, that the first nonzero entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrix A maps a hypersphere into another
hypersphere, the axes of the latter are not defined. For instance, the identity matrix has an infinity
of SVDs, all of the form

I = UIUT

where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular
values coincide, the subspaces identified by the corresponding left and right singular vectors are
unique, but any orthonormal basis can be chosen within, say, the right subspace and yield, together
with the corresponding left singular vectors, a valid SVD. Except for these ambiguities, the SVD
is unique.

Even in the general case, the singular values of a matrix A are the lengths of the semi-axes of
the hyperellipse E defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we define r by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,
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that is, if σr is the smallest nonzero singular value of A, then

rank(A) = r

null(A) = span{vr+1, . . . , vn}
range(A) = span{u1, . . . , ur} .

The sizes of the matrices in the SVD are as follows: U is m×m, Σ is m× n, and V is n× n.
Thus, Σ has the same shape and size as A, while U and V are square. However, if m > n, the
bottom (m−n)×n block of Σ is zero, so that the last m−n columns of U are multiplied by zero.
Similarly, if m < n, the rightmost m × (n − m) block of Σ is zero, and this multiplies the last
n −m rows of V . This suggests a “small,” equivalent version of the SVD. If p = min(m,n), we
can define Up = U(:, 1 : p), Σp = Σ(1 : p, 1 : p), and Vp = V (:, 1 : p), and write

A = UpΣpV
T
p

where Up is m× p, Σp is p× p, and Vp is n× p.
Moreover, if p − r singular values are zero, we can let Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r),

and Vr = V (:, 1 : r), then we have

A = UrΣrV
T
r =

r∑
i=1

σiuivT
i ,

which is an even smaller, minimal, SVD.
Finally, both the 2-norm and the Frobenius norm

‖A‖F =

√√√√
m∑

i=1

n∑
j=1

|aij|2

and

‖A‖2 = sup
x6=0

‖Ax‖
‖x‖

are neatly characterized in terms of the SVD:

‖A‖2
F = σ2

1 + . . . + σ2
p

‖A‖2 = σ1 .

In the next few sections we introduce fundamental results and applications that testify to the
importance of the SVD.

The Pseudoinverse
One of the most important applications of the SVD is the solution of linear systems in the least
squares sense. A linear system of the form

Ax = b (71)
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arising from a real-life application may or may not admit a solution, that is, a vector x that satisfies
this equation exactly. Often more measurements are available than strictly necessary, because mea-
surements are unreliable. This leads to more equations than unknowns (the number m of rows in A
is greater than the number n of columns), and equations are often mutually incompatible because
they come from inexact measurements (incompatible linear systems were defined in chapter 9).
Even when m ≤ n the equations can be incompatible, because of errors in the measurements that
produce the entries of A. In these cases, it makes more sense to find a vector x that minimizes the
norm

‖Ax− b‖
of the residual vector

r = Ax− b .

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy any of
the m equations in the system, but it tries to satisfy all of them as closely as possible, as measured
by the sum of the squares of the discrepancies between left- and right-hand sides of the equations.

In other circumstances, not enough measurements are available. Then, the linear system (71)
is underdetermined, in the sense that it has fewer independent equations than unknowns (its rank r
is less than n, see again chapter 9).

Incompatibility and underdeterminacy can occur together: the system admits no solution, and
the least-squares solution is not unique. For instance, the system

x1 + x2 = 1

x1 + x2 = 3

x3 = 2

has three unknowns, but rank 2, and its first two equations are incompatible: x1 + x2 cannot
be equal to both 1 and 3. A least-squares solution turns out to be x = [1 1 2]T with residual
r = Ax− b = [1 − 1 0], which has norm

√
2 (admittedly, this is a rather high residual, but this is

the best we can do for this problem, in the least-squares sense). However, any other vector of the
form

x′ =




1
1
2


 + α



−1
1
0




is as good as x. For instance, x′ = [0 2 2], obtained for α = 1, yields exactly the same residual as
x (check this).

In summary, an exact solution to the system (71) may not exist, or may not be unique, as we
learned in chapter 9. An approximate solution, in the least-squares sense, always exists, but may
fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out
to be shorter than all the others, that is, its norm ‖x‖ is smallest. One can therefore redefine what
it means to “solve” a linear system so that there is always exactly one solution. This minimum
norm solution is the subject of the following theorem, which both proves uniqueness and provides
a recipe for the computation of the solution.
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Theorem 10.5 The minimum-norm least squares solution to a linear system Ax = b, that is, the
shortest vector x that achieves the

minx ‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UT b (72)

where

Σ† =




1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .
0 0 · · · 0




is an n×m diagonal matrix.

The matrix
A† = V Σ†UT

is called the pseudoinverse of A.
Proof. The minimum-norm Least Squares solution to

Ax = b

is the shortest vector x that minimizes
‖Ax− b‖

that is,
‖UΣV T x− b‖ .

This can be written as
‖U(ΣV T x− UT b)‖ (73)

because U is an orthogonal matrix, UUT = I . But orthogonal matrices do not change the norm of
vectors they are applied to (theorem 10.2), so that the last expression above equals

‖ΣV T x− UT b‖

or, with y = V T x and c = UT b,
‖Σy− c‖ .
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In order to find the solution to this minimization problem, let us spell out the last expression. We
want to minimize the norm of the following vector:



σ1 0 · · · 0

0
. . . · · · 0

σr
... 0

...
. . .

0 0







y1
...
yr

yr+1
...

yn



−




c1
...
cr

cr+1
...

cm




.

The last m− r differences are of the form

0−




cr+1
...

cm




and do not depend on the unknown y. In other words, there is nothing we can do about those
differences: if some or all the ci for i = r + 1, . . . , m are nonzero, we will not be able to zero
these differences, and each of them contributes a residual |ci| to the solution. In each of the first r
differences, on the other hand, the last n− r components of y are multiplied by zeros, so they have
no effect on the solution. Thus, there is freedom in their choice. Since we look for the minimum-
norm solution, that is, for the shortest vector x, we also want the shortest y, because x and y are
related by an orthogonal transformation. We therefore set yr+1 = . . . = yn = 0. In summary, the
desired y has the following components:

yi =
ci

σi

for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .

When written as a function of the vector c, this is

y = Σ+c .

Notice that there is no other choice for y, which is therefore unique: minimum residual forces
the choice of y1, . . . , yr, and minimum-norm solution forces the other entries of y. Thus, the
minimum-norm, least-squares solution to the original system is the unique vector

x̂ = V y = V Σ+c = V Σ+UT b

as promised. The residual, that is, the norm of ‖Ax− b‖ when x is the solution vector, is the norm
of Σy − c, since this vector is related to Ax − b by an orthogonal transformation (see equation
(73)). In conclusion, the square of the residual is

‖Ax− b‖2 = ‖Σy− c‖2 =
m∑

i=r+1

c2
i =

m∑
i=r+1

(uT
i b)2

which is the projection of the right-hand side vector b onto the complement of the range of A. ∆
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Least-Squares Solution of a Homogeneous Linear Systems
Theorem 10.5 works regardless of the value of the right-hand side vector b. When b = 0, that is,
when the system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (74)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in
the null space of A is also a solution, by definition), but it is obviously the one with the smallest
norm.

Thus, x = 0 is the minimum-norm solution to any homogeneous linear system. Although
correct, this solution is not too interesting. In many applications, what is desired is a nonzero
vector x that satisfies the system (74) as well as possible. Without any constraints on x, we would
fall back to x = 0 again. For homogeneous linear systems, the meaning of a least-squares solution
is therefore usually modified, once more, by imposing the constraint

‖x‖ = 1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessar-
ily admit a unique solution. The following theorem provides a recipe for finding this solution, and
shows that there is in general a whole hypersphere of solutions.

Theorem 10.6 Let
A = UΣV T

be the singular value decomposition of A. Furthermore, let vn−k+1, . . . , vn be the k columns of V
whose corresponding singular values are equal to the last singular value σn, that is, let k be the
largest integer such that

σn−k+1 = . . . = σn .

Then, all vectors of the form
x = α1vn−k+1 + . . . + αkvn (75)

with
α2

1 + . . . + α2
k = 1 (76)

are unit-norm least squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .
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Note: when σn is greater than zero the most common case is k = 1, since it is very unlikely
that different singular values have exactly the same numerical value. When A is rank deficient, on
the other case, it may often have more than one singular value equal to zero. In any event, if k = 1,
then the minimum-norm solution is unique, x = vn. If k > 1, the theorem above shows how to
express all solutions as a linear combination of the last k columns of V .
Proof. The reasoning is very similar to that for the previous theorem. The unit-norm Least
Squares solution to

Ax = 0

is the vector x with ‖x‖ = 1 that minimizes

‖Ax‖

that is,
‖UΣV T x‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to (theorem 10.2),
this norm is the same as

‖ΣV T x‖
or, with y = V T x,

‖Σy‖ .

Since V is orthogonal, ‖x‖ = 1 translates to ‖y‖ = 1. We thus look for the unit-norm vector y that
minimizes the norm (squared) of Σy, that is,

σ2
1y

2
1 + . . . + σ2

ny
2
n .

This is obviously achieved by concentrating all the (unit) mass of y where the σs are smallest, that
is by letting

y1 = . . . = yn−k = 0. (77)

From y = V T x we obtain x = V y = y1v1 + . . . + ynvn, so that equation (77) is equivalent to
equation (75) with α1 = yn−k+1, . . . , αk = yn, and the unit-norm constraint on y yields equation
(76). ∆

Section 10 shows a sample use of theorem 10.6.
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SVD Line Fitting

The Singular Value Decomposition of a matrix yields a simple method for fitting a line to a set of
points on the plane.

Fitting a Line to a Set of Points

Let pi = (xi, yi)
T be a set of m ≥ 2 points on the plane, and let

ax + by − c = 0

be the equation of a line. If the lefthand side of this equation is multiplied by a nonzero constant,
the line does not change. Thus, we can assume without loss of generality that

‖n‖ = a2 + b2 = 1 , (78)

where the unit vector n = (a, b)T , orthogonal to the line, is called the line normal.
The distance from the line to the origin is |c| (see figure 34), and the distance between the line

n and a point pi is equal to

di = |axi + byi − c| = |pT
i n− c| . (79)

p
i

a

b
|c|

Figure 34: The distance between point pi = (xi, yi)
T and line ax + by − c = 0 is |axi + byi − c|.

The best-fit line minimizes the sum of the squared distances. Thus, if we let d = (d1, . . . , dm)
and P = (p1 . . . , pm)T , the best-fit line achieves the

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− c1‖2 . (80)

In equation (80), 1 is a vector of m ones.
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The Best Line Fit

Since the third line parameter c does not appear in the constraint (78), at the minimum (80) we
must have

∂‖d‖2

∂c
= 0 . (81)

If we define the centroid p of all the points pi as

p =
1

m
P T 1 ,

equation (81) yields

∂‖d‖2

∂c
=

∂

∂c

(
nT P T − c1T

)
(Pn− 1c)

=
∂

∂c

(
nT P T Pn + c21T 1− 2nT P T c1

)

= 2
(
mc− nT P T 1

)
= 0

from which we obtain
c =

1

m
nT P T 1 ,

that is,
c = pT n .

By replacing this expression into equation (80), we obtain

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− 1pT n‖2 = min
‖n‖=1

‖Qn‖2 ,

where Q = P − 1pT collects the centered coordinates of the m points. We can solve this con-
strained minimization problem by theorem 10.6. Equivalently, and in order to emphasize the ge-
ometric meaning of signular values and vectors, we can recall that if n is on a circle, the shortest
vector of the form Qn is obtained when n is the right singular vector v2 corresponding to the
smaller σ2 of the two singular values of Q. Furthermore, since Qv2 has norm σ2, the residue is

min
‖n‖=1

‖d‖ = σ2

and more specifically the distances di are given by

d = σ2u2

where u2 is the left singular vector corresponding to σ2. In fact, when n = v2, the SVD

Q = UΣV T =
2∑

i=1

σiuivT
i
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yields

Qn = Qv2 =
2∑

i=1

σiuivT
i v2 = σ2u2

because v1 and v2 are orthonormal vectors.
To summarize, to fit a line (a, b, c) to a set of m points pi collected in the m × 2 matrix

P = (p1 . . . , pm)T , proceed as follows:

1. compute the centroid of the points (1 is a vector of m ones):

p =
1

m
P T 1

2. form the matrix of centered coordinates:

Q = P − 1pT

3. compute the SVD of Q:
Q = UΣV T

4. the line normal is the second column of the 2× 2 matrix V :

n = (a, b)T = v2 ,

5. the third coefficient of the line is
c = pT n

6. the residue of the fit is
min
‖n‖=1

‖d‖ = σ2

The following matlab code implements the line fitting method.

function [l, residue] = linefit(P)
% check input matrix sizes
[m n] = size(P);
if n ˜= 2, error(’matrix P must be m x 2’), end
if m < 2, error(’Need at least two points’), end
one = ones(m, 1);
% centroid of all the points
p = (P’ * one) / m;
% matrix of centered coordinates
Q = P - one * p’;
[U Sigma V] = svd(Q);
% the line normal is the second column of V
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n = V(:, 2);
% assemble the three line coefficients into a column vector
l = [n ; p’ * n];
% the smallest singular value of Q
% measures the residual fitting error
residue = Sigma(2, 2);

A useful exercise is to think how this procedure, or something close to it, can be adapted to fit
a set of data points in Rm with an affine subspace of given dimension n. An affine subspace is a
linear subspace plus a point, just like an arbitrary line is a line through the origin plus a point. Here
“plus” means the following. Let L be a linear space. Then an affine space has the form

A = p + L = {a | a = p + l and l ∈ L} .

Hint: minimizing the distance between a point and a subspace is equivalent to maximizing the
norm of the projection of the point onto the subspace. The fitting problem (including fitting a line
to a set of points) can be cast either as a maximization or a minimization problem.


