

CPS110: Landon Cox Page 1 of
19

Two types of synchronization

Mutual exclusion

 Ensure that only 1 thread (or more generally, fewer than N

threads) is in a critical section at once

 Lock/unlock

Ordering constraints

 Used when thread should wait for some event (not just

another thread leaving a critical section)

 Used to enforce before-after relationships

 E.g. dequeuer wants to wait for enqueuer to add something

to the queue

Monitors

Note that this differs from Tanenbaum’s treatment

Monitors use separate mechanisms for the types of synchronization

 Use locks for mutual exclusion

 Use condition variables for ordering constraints

A monitor = a lock + the condition variable associated with the lock

CPS110: Landon Cox Page 2 of
19

Condition variables

Main idea: make it possible for thread to sleep inside a critical

section by atomically

 Release the lock

 Put the thread on a wait queue and go to sleep

Each condition variable has a queue of waiting threads (i.e. threads

that are sleeping, waiting for a certain condition)

Each condition variable is associated with one lock

Operations on condition variables

 Wait: atomically release lock, put thread on condition wait

queue, go to sleep (i.e. start to wait for wakeup)

When wait returns it automatically re-acquires the lock.

 Signal: wake up a thread waiting on this condition variable

(if any)

 Broadcast: wake up all threads waiting on this condition

variable (if any)

Note that thread must be holding lock when it calls wait

Should thread re-establish the invariant before calling wait?

Thread-safe queue with monitors

enqueue () {

 lock (queueLock)

 find tail of queue

 add new element to tail of queue

 unlock (queueLock)

}

dequeue () {

 lock (queueLock)

 remove item from queue

 unlock (queueLock)

 return removed item

}

CPS110: Landon Cox Page 3 of
19

Mesa vs. Hoare monitors

So far we have described Mesa monitors

 When waiter is woken, it must contend for the lock with

other threads

 Hence, it must re-check the condition

What would be required to ensure that the condition is met when

the waiter returns from wait and starts running again?

Hoare monitors give special priority to the woken-up waiter

 Signaling thread gives up lock 9hence signaler must re-

establish invariant before calling signal)

 Woken-up waiter acquires lock

 Signaling thread re-acquires lock after waiter unlocks

We’ll stick to Mesa monitors (as most operating systems do)

Tips for programming with monitors

List the shared data needed to solve the problem

Decide which locks (and how many) will protect which data

 More locks (protecting finer-grained data) allows different

data to be accessed simultaneously, but is more complex

 One lock will usually enough in this class

Put lock … unlock calls around code the uses shared data

List before-after conditions

 One condition variable per condition

 Condition variable’s lock should be the lock that protects

the shared data that is used to evaluate the condition

Call wait() when thread needs to wait for a condition to be true; use

a while loop to re-check condition after wait returns (aka “loop

before you leap”)

Call signal when a condition changes that another thread might be

interested in

Make sure invariants are established whenever a lock is not held

(i.e. before you call unlock and before you call wait)

CPS110: Landon Cox Page 4 of
19

Producer-consumer (bounded buffer)

Problem: producer puts things into a shared buffer, consumer takes

them out. Need synchronization for coordinating producer and

consumer.

 E.g. Unix pipeline (gcc calls cpp | cc1 | cc2 | as)

 Buffer between producer and consumer allows them to

operate somewhat independently. Otherwise must operate

in lockstep (producer puts one thing in buffer, then

consumer takes it out, then producer adds another, then

consumer takes it out, etc.)

E.g. soda machine

 Delivery person (producer) fills machine with sodas

 Students (consumer) buy sodas and drink them

 Soda machine has infinite space

Producer-consumer using monitors

Variables

 Shared data for the soda machine (assume machine can

hold “max” cans)

 numSodas (number of cans in the machine)

One lock (sodaLock) to protect this shared data

 fewer locks make the programming simpler, but allow less

concurrency

Ordering constraints

 consumer must wait for producer to fill buffer if all buffers

are empty (ordering constraint)

 producer must wait for consumer to empty buffer if buffers

are completely full (ordering constraint)

Producer Consumer

CPS110: Landon Cox Page 5 of
19

What if we wanted to have producer continuously loop? Can we put

the loop inside the lock … unlock region?

Can we use only 1 condition variable?

Can we always use broadcast() instead of signal()?

CPS110: Landon Cox Page 6 of
19

Reader/writer locks using monitors

With standard locks, threads acquire the lock in order to read

shared data. This prevents any other threads from accessing the

data. Can we allow more concurrency without risking the viewing

of unstable data?

Problem definition

 shared data that will be read and written by multiple

threads

 allow multiple readers to access shared data when no

threads are writing data

 a thread can write shared data only when no other thread is

reading or writing the shared data

Interface: two types of functions to allow threads different types of

access

 readerStart ()

 readerFinish ()

 writerStart ()

 writerFinish ()

 many threads can be in between a readerStart and

readerFinish (only if there are no threads who are between

a writerStart and writerFinish)

 only 1 thread can be between writerStart and writerFinish

Implement reader/writer locks using monitors. Note the increased

layering of synchronization operations

Concurrent program

Even high-level synchronization

(reader/writer functions)

High-level synchronization

(semarphores, locks, monitors)

Hardware (load/store, interrupt

enable/disable, test&set)

CPS110: Landon Cox Page 7 of
19

Monitor data (this is not the application data. Rather, it’s the data

needed to implement readerStart, readerFinish, writerStart, and

writerFinish)

 what shared data is needed to implement reader/writer

functions?

 Use one lock (RWlock)

 Condition variables?

CPS110: Landon Cox Page 8 of
19

In readerFinish(), could I switch the order of “numReaders—“ and

“broadcast”?

If a writer finishes and there are several waiting readers and writers,

who will win (i.e. will writerStart return, or will 1 readerStart, or will

multiple readerStarts)?

How long will a writer wait?

How to give priority to a waiting writer?

Why use broadcast?

Note that all waiting readers and writers are woken up each time

any thread leaves. How can we decrease the number of spurious

wakeups?

CPS110: Landon Cox Page 9 of
19

Reader-writer functions are very similar to standard locks

 Call readerStart before you read the data (like calling lock())

 Call readerFinish after you are done reading the data (like

calling unlock())

 Call writerStart before you write the data (like calling lock ())

 Call writerFinish after you are done writing the data (like

calling unlock())

These functions are known as “reader-writer locks”.

 Thread that is between readerStart and readerFinish is said

to “hold a read lock”

 Thread that is between writerStart and writerFinish is said

to “hold a write lock”

Compare reader-writer locks with standard locks

Semaphores

Semaphores are like a generalized lock

A semaphore has a non-negative integer value (>= 0) and supports

the following operations

 Down: wait for semaphore to become positive, then

decrement semaphore by 1 (originally called “P” for the

Dutch “proberen”)

 Up: increment semaphore by 1 (originally called “V” for the

Dutch “verhogen”). This wakes up a thread waiting in

down(), if there are any.

 Can also set the initial value of the semaphore

The key parts in down() and up() are atomic

 Two down() calls at the same time can’t decrement the

value below 0

Binary semaphore

 Value is either 0 or 1

 Down() waits for value to become 1, then sets it to 0

 Up() sets value to 1, waking up waiting down (of any)

CPS110: Landon Cox Page 10 of
19

Can use semaphores for both types of

synchronization

Mutual exclusion

 Initial value of semaphore is 1 (or more generally N)

cown()

<critical section>

up()

 Like lock/unlock, but more general

 Implement lock as a binary semaphore, initialized to 1

Ordering constraints

 Usually (not always) initial value is 0

 E.g. thread A wants to wait for thread B to finish before

continuing

semaphore initialized to 0

A B

 down() do task

 continue execution up()

Solving producer-consumer with semaphores

Semaphore assignments

 mutex: ensures mutual exclusion around code that

manipulates buffer queue (initialized to 1)

 fullBuffers: counts the number of full buffers (initialized to

0)

 emptyBuffers: counts the number of empty buffers

(initialized to N)

CPS110: Landon Cox Page 11 of
19

Why do we need different semaphores for fullBuffers and

emptyBuffers?

Does the order of the down() calls matter in the consumer (or the

producer)?

Does the order of the up() calls matter in the consumer (or the

producer)?

What (if anything) must change to allow multiple producers and/or

multiple producers and/or multiple consumers?

What if there’s 1 full buffer, and multiple consumers call

down(fullBuffers) at the same time?

Comparing monitors and semaphores

Semaphores used for both mutual exclusion and ordering

constraints

 elegant (one mechanism for both purposes)

 code can be hard to reason about and get right

Monitor lock is just like a binary semaphore that is initialized to 1

 lock() = down()

 unlock() = up()

Condition variables vs. semaphores

Condition variables Semaphores
while(cond) {wait();} down();

Conditional code in user
program

Conditional code in semaphore
definition

user writes customized
condition

Condition specified by
semaphore definition (wait if
value == 0)

User provides shared variables,
protect with lock

Semaphore provides shared
variable (integer) and thread-
safe operations on the integer

No memory of past signals “remembers” past up() calls

CPS110: Landon Cox Page 12 of
19

Condition variables are more flexible than using semaphores for

ordering constraints

 condition variables: can use arbitrary conditions to wait

 semaphores: wait if semaphore value equals 0

Semaphores work best if the shared integer and waiting condition

(==0) maps naturally to the problem domain

Implementing threads on a uni-processor

So far, we’ve been assuming that we have enough physical

processors to run each thread on its own processor

 but threads are useful also for running on a uni-processor

(see web server example)

 how to give the illusion of infinite physical processors on a

single processor?

Play analogy

CPS110: Landon Cox Page 13 of
19

Ready threads

What to do with a thread while it’s not running

 must save its private state somewhere

 what constitutes private data for a thread?

This information is called the thread “context” and is stoned in a

“thread control block” when the thread isn’t running

 to save space, share code among all threads

 to save space, don’t copy stack to the thread control block.

Rather, use multiple stacks in the same address space, and

just copy the stack pointer to the thread control block.

Keep thread control blocks of threads that aren’t running on a

queue of ready (but not running) threads

 thread state can now be running (the thread that’s currently

using the CPU), ready (ready to run, but waiting for the

CPU), or blocked (waiting for a signal() or up() or unlock()

from another thread)

Switching threads

Steps needed to switch to another thread

 thread returns control to the OS

 choose new thread to run

 save state of current thread (into its thread control block)

 load the context of the next thread (from its thread control

block)

 run thread

CPS110: Landon Cox Page 14 of
19

Returning control to the OS

How does a thread return control back to the OS (so system can

save the state of the current thread and run a new thread)?

Choosing the next thread to run

If no ready threads, just loop idly

 loop switches to a thread when one becomes ready

If 1 ready thread, run it

If more than 1 ready thread, choose one to run

 FIFO

 Priority queue according to some priority (more on this in

CPU scheduling)

CPS110: Landon Cox Page 15 of
19

Saving state of current thread

How to save state of current thread?

 Save registers, PC, stack pointer (SP)

 This is very tricky assembly-language code

 Why won’t the following code work?

100 save PC // i.e. value 100

101 switch to next thread

 In Project 1, we’ll use Unix’s swapcontext()

Loading context of next thread and running it

How to load the context of the next thread to run it?

CPS110: Landon Cox Page 16 of
19

Example of thread switching

 Thread 1

 print “start thread 1”

 yield ()

 print “end thread 1”

 Thread 2

 print “start thread 2”

 yield()

 print “end thread 2”

 yield

 print “start yield (thread %d)”

 switch to next thread (swapcontext)

 print “end yield (current thread %d)”

thread 1’s output thread 2’s output

3 thread states

 Running (is currently using the CPU)

 Ready (waiting for the CPU)

 Blocked (waiting for some other event, e.g. I/O to complete,

another thread to call unlock)

 Running

Ready Blocked

CPS110: Landon Cox Page 17 of
19

Creating a new thread

Overall: create state for thread and add it to the ready queue

 When saving a thread to its thread control block, we

remembered its current state

 We can construct the state of a new thread as if it had been

running and got switched out

Steps

 Allocate and initialize new thread control block

 Allocate and initialize new stack

Allocate memory for stack with C++ new

Initialize the stack pointer and PC so that it looks like it was

going to call a specified function. This is done with

makecontext in Project 1.

 Add thread to ready queue

Unix’s fork() is related but different. Unix’s fork() creates a new

process (a new thread in a new address space). In Unix, this new

adderss space is a copy of the creator’s address space.

thread_create is like an asynchronous procedure call

What if the parent thread wants to do some work in parallel with

the child thread and then wait for the child thread to finish?

Parent

return call

Parent

create (parent work)

(child work)

Parent

create (parent work)

(child work)

(parent continues)

Child

Child

CPS110: Landon Cox Page 18 of
19

Does the following work?

parent () {

 thread_create

 print “parent works”

 print “parent continues”

}

child () {

 print “child works”

}

Does the following work?

parent () {

 thread_create

 print “parent works”

 thread_yield

 print “parent continues”

}

child () {

 print “child works”

}

Does the following work?

parent () {

 thread_create

 lock

 print “parent works”

 wait

 print “parent continues”

 unlock

}

child () {

 lock

 print “child works”

 signal

 unlock

}

CPS110: Landon Cox Page 19 of
19

Join(): wait for another thread to finish

parent () {

 thread_create

 lock

 print “parent works”

 unlock

 join

 print “parent continues”

}

child() {

 lock

 print “child works”

 unlock

}

