The Worms Crawl In The Worms Crawl Out

15-744 David Andersen

Credits

- Parts of these slides are heavily inspired by Stefan Savage's NDSS 2005 talk
- (Some bits are stolen verbatim)
- See
 - http://www.cs.ucsd.edu/~savage/papers/Interr

for original, much prettier, slides

Threat Model

Traditional

- High-value targets
- Insider threats

Worms & Botnets

- Automated attack of millions of targets
- Value in aggregate, not individual systems
- Threats: Software vulnerabilities; naïve users

... and it's profitable

- Botnets used for
 - Spam (and more spam)
 - Credit card theft
 - DDoS extortion
- Flourishing Exchange market
 - Spam proxying: 3-10 cents/host/week
 - 25k botnets: \$40k \$130k/year
 - Also for stolen accounts, compromised machines, credit cards, identities, etc. (be worried)

Why is this problem hard?

- Monoculture: little "genetic diversity" in hosts
- Instantaneous transmission: Almost entire network within 500ms
- **Slow immune response**: human scales (10x-1Mx slower!)
- Poor hygiene: Out of date / misconfigured systems; naïve users
- Intelligent designer ... of pathogens
- Near-Anonymitity

Example Outbreak: SQL Slammer (2003)

- Single, small UDP packet exploit (376 b)
- First ~1min: classic random scanning
 - Doubles # of infected hosts every ~8.5sec
 - (In comparison: Code Red doubled in 40min)
- After 1min, starts to saturate access b/w
 - Interferes with itself, so it slows down
 - By this point, was sending 20M pps
 - Peak of 55 million IP scans/sec @ 3min
- 90% of Internet scanned in < 10mins
- Infected ~100k or more hosts

Digression: Fast Worms

- How fast could a really fast worm spread?
- Localized scanning: Preferential scanning of "nearby" hosts
 - Host density not uniform
- Multi-vector worms: Can find more vulnerable hosts
- **Hit-list scanning**: Pre-identify many "seed" machines; divide & conquer
 - Scanning; DNS; spiders; surveys; passive

Fast Worms, Cont'd.

Permutation Scanning

- Don't scan purely randomly; divide scan space intelligently among worms
- Simple permutation -> coordinated behavior
- How fast?
 - Easy: A couple of minutes for the entire 'net
 - Pre-scanning: 10s of seconds?
 - Pre-scanning, UDP, insane effort: < 2sec?</p>
 - (follow-on paper to the one we're reading)
- Exponential growth is a pain...

An Ounce of Prevention?

- Get rid of the vulnerabilities (testing, modeling, proving, engineering, etc.)
 - Soundness, completeness, usability...
- Permute vulnerabilities (e.g., address space randomization) – makes it harder to compromise
- Block traffic (firewalls): helps, but many worms slipped inside firewalls. Only takes one vulnerable computer wandering between in & out or multi-homed, etc.

We keep trying, but worms keep worming

Hygiene

- Keep vulnerable hosts off network
 - Must scan / etc., before connecting
 - Some commercial products do this
- Helps, but not entire problem
 - 0-day worms
 - Incomplete vuln. databases
 - etc.

Containment

- Slow down scan rate
 - Allow hosts limited # of new contacts/sec.
 - Can slow worms down, but they do still spread
- Quarantine
 - Detect worm, block it

Reactive "Immune System"

- Reaction time: How long to detect & react?
- Containment strategy: How the behavior is (1) identified; and (2) stopped
- Deployment strategy: Who participates? End-hosts? Routers?

Strategies

- Reaction time: seconds?
- Containment:
 - Address blacklisting (more false positives make it harder to be aggressive)
 - Content filtering
- Deployment
 - Top 40 ISPs provide decent containment
 - But really, need lots and lots of nets

Detection

- Behavior: Contacting 1000s of hosts, etc.
- Honeypots: Hosts nobody should contact
 - Traffic assumed to be malicious
 - Replies to traffic, permits real/pretend infection
 - Virtual machines / honeyd / etc.
- After detection: signature inference

Signature Inference

- Content prevalence: Autograph, EarlyBird, etc.
 - Assumes some content invariance
 - Pretty reasonable for starters.

_

- Goal: Identify "attack" substrings
 - Maximize detection rate
 - Minimize false positive rate

Common strings

- Definition of substring:
 - Byte range, protocol, port (why?)
- First: identify common packets
 - Hash and count?
 - Saw from Snoeren still has pretty large memory requirements
 - "heavy-hitter" identification: only need the common stuff, so sampling should work well
 - This paper uses "multi-stage" filters: basically a counting bloom filter like we talked about last time

Common Substrings

- Fix length as beta (small)
- Use Rabin Fingerprinting to efficiently hash
 - Shift values in & out of polynomial
 - O(N) computation for O(N) bytes
- Reduce the # by sampling
 - But must deterministically sample (why?)
 - Sample only values whose low-order hash bits are zero (or somehing else)
 - This trick is used for lots of things...

Finding the Guilty

- Address Dispersion
 - Scanning worms will cover more addresses than most "legitimate" content
 - How many distinct sources/dests
- EarlyBird technique: scaled bitmap
 - 1/(2^n)th of hash space -> bitmap
 - e.g., hash(src) -> [0, 63], bitmap [0,31]
 - When bitmap fills, double hash size
 - hash(src) -> [0, 127]; increment scale counter
 - Small tweak: Keep 2 older bitmaps, correct for double counting

False Negatives in EB

- False Negatives
 - Very hard to prove...
 - Earlybird detected all worm outbreaks reported on security lists over 8 months
 - EB detected all worms detected by Snort (signature-based IDS)
 - And some that weren't

False Positives in EB

- Common protocol headers
 - HTTP, SMTP headers
 - p2p protocol headers
- Non-worm epidemic activity
 - Spam
 - BitTorrent (!)
- Solution:
 - Small whitelist...

Distributing Signatures

- No time; see Dawn Song's work for some pointers on distributing verifiable signatures
 - Requires access to vulnerable binary
 - Creates signatures based on actual vulnerability, not content prevalence. Can be better – but slower – than prevalence metrics
- Have to get the signatures sent around fast
- Trust?

Unrelated: Presentations

- See David Patterson's "How to Give a Bad Talk" advice...
- Be neat
- Be concise! <= 7 bullets/slide, LARGE FONTS
 - Talk about the most important things
 - Your talk is an *advertisement* for your paper, not a complete summary. You MUST downsample, so do it well.
- Use pictures! Words + words == mental confict; words + pictures
 = reinforcement
- Use color, italics, bold to emphasize (and do it *consistently*)
- Make eye contact with audience
- Practice your talk! Even for this class