

The Worms Crawl In
The Worms Crawl Out

15-744
David Andersen

Credits
� Parts of these slides are heavily inspired

by Stefan Savage's NDSS 2005 talk
� (Some bits are stolen verbatim)
� See

� http://www.cs.ucsd.edu/~savage/papers/InternetOutbreak.NDSS05.pdf

for original, much prettier, slides

Threat Model

Traditional
� High-value targets
� Insider threats

Worms & Botnets
� Automated attack

of millions of
targets

� Value in aggregate,
not individual
systems

� Threats: Software
vulnerabilities;
naïve users

... and it's profitable
� Botnets used for

� Spam (and more spam)
� Credit card theft
� DDoS extortion

� Flourishing Exchange market
� Spam proxying: 3-10 cents/host/week
� 25k botnets: $40k - $130k/year
� Also for stolen accounts, compromised

machines, credit cards, identities, etc.
(be worried)

Why is this problem hard?
� Monoculture: little �genetic diversity� in

hosts
� Instantaneous transmission: Almost

entire network within 500ms
� Slow immune response: human scales

(10x-1Mx slower!)
� Poor hygiene: Out of date /

misconfigured systems; naïve users
� Intelligent designer ... of pathogens
� Near-Anonymitity

Example Outbreak: SQL
Slammer (2003)

� Single, small UDP packet exploit (376 b)
� First ~1min: classic random scanning

� Doubles # of infected hosts every ~8.5sec
� (In comparison: Code Red doubled in 40min)

� After 1min, starts to saturate access b/w
� Interferes with itself, so it slows down
� By this point, was sending 20M pps
� Peak of 55 million IP scans/sec @ 3min

� 90% of Internet scanned in < 10mins
� Infected ~100k or more hosts

Digression: Fast Worms
� How fast could a really fast worm spread?
� Localized scanning: Preferential

scanning of �nearby� hosts
� Host density not uniform

� Multi-vector worms: Can find more
vulnerable hosts

� Hit-list scanning: Pre-identify many
�seed� machines; divide & conquer
� Scanning; DNS; spiders; surveys; passive

Fast Worms, Cont'd.
� Permutation Scanning

� Don't scan purely randomly; divide scan
space intelligently among worms

� Simple permutation -> coordinated behavior
� How fast?

� Easy: A couple of minutes for the entire 'net
� Pre-scanning: 10s of seconds?
� Pre-scanning, UDP, insane effort: < 2sec?

� (follow-on paper to the one we're reading)
� Exponential growth is a pain...

An Ounce of Prevention?
� Get rid of the vulnerabilities (testing,

modeling, proving, engineering, etc.)
� Soundness, completeness, usability...

� Permute vulnerabilities (e.g., address
space randomization) � makes it harder to
compromise

� Block traffic (firewalls): helps, but many
worms slipped inside firewalls. Only takes
one vulnerable computer wandering
between in & out or multi-homed, etc.

We keep trying, but worms keep worming

Hygiene
� Keep vulnerable hosts off network

� Must scan / etc., before connecting
� Some commercial products do this

� Helps, but not entire problem
� 0-day worms
� Incomplete vuln. databases
� etc.

Containment
� Slow down scan rate

� Allow hosts limited # of new contacts/sec.
� Can slow worms down, but they do still

spread
� Quarantine

� Detect worm, block it

Reactive �Immune System�
� Reaction time: How long to detect &

react?
� Containment strategy: How the

behavior is (1) identified; and (2) stopped
� Deployment strategy: Who

participates? End-hosts? Routers?

Strategies
� Reaction time: seconds?
� Containment:

� Address blacklisting (more false positives
make it harder to be aggressive)

� Content filtering
� Deployment

� Top 40 ISPs provide decent containment
� But really, need lots and lots of nets

Detection
� Behavior: Contacting 1000s of hosts, etc.
� Honeypots: Hosts nobody should contact

� Traffic assumed to be malicious
� Replies to traffic, permits real/pretend

infection
� Virtual machines / honeyd / etc.

� After detection: signature inference

Signature Inference
� Content prevalence: Autograph,

EarlyBird, etc.
� Assumes some content invariance
� Pretty reasonable for starters.
�

� Goal: Identify �attack� substrings
� Maximize detection rate
� Minimize false positive rate

Common strings
� Definition of substring:

� Byte range, protocol, port (why?)
� First: identify common packets

� Hash and count?
� Saw from Snoeren � still has pretty large memory

requirements
� �heavy-hitter� identification: only need the

common stuff, so sampling should work well
� This paper uses �multi-stage� filters: basically a

counting bloom filter like we talked about last
time

Common Substrings
� Fix length as beta (small)
� Use Rabin Fingerprinting to efficiently

hash
� Shift values in & out of polynomial
� O(N) computation for O(N) bytes

� Reduce the # by sampling
� But must deterministically sample (why?)
� Sample only values whose low-order hash

bits are zero (or somehing else)
� This trick is used for lots of things...

Finding the Guilty
� Address Dispersion

� Scanning worms will cover more addresses
than most �legitimate� content

� How many distinct sources/dests
� EarlyBird technique: scaled bitmap

� 1/(2^n)th of hash space -> bitmap
� e.g., hash(src) -> [0, 63], bitmap [0,31]

� When bitmap fills, double hash size
� hash(src) -> [0, 127]; increment scale counter

� Small tweak: Keep 2 older bitmaps, correct
for double counting

False Negatives in EB
� False Negatives

� Very hard to prove...
� Earlybird detected all worm outbreaks

reported on security lists over 8 months
� EB detected all worms detected by Snort

(signature-based IDS)
� And some that weren't

False Positives in EB
� Common protocol headers

� HTTP, SMTP headers
� p2p protocol headers

� Non-worm epidemic activity
� Spam
� BitTorrent (!)

� Solution:
� Small whitelist...

Distributing Signatures
� No time; see Dawn Song's work for some

pointers on distributing verifiable
signatures
� Requires access to vulnerable binary
� Creates signatures based on actual

vulnerability, not content prevalence. Can be
better � but slower � than prevalence metrics

� Have to get the signatures sent around
fast

� Trust?

Unrelated: Presentations
� See David Patterson's �How to Give a Bad Talk� advice...
� Be neat
� Be concise! <= 7 bullets/slide, LARGE FONTS

� Talk about the most important things
� Your talk is an advertisement for your paper, not a complete

summary. You MUST downsample, so do it well.
� Use pictures! Words + words == mental confict; words + pictures

= reinforcement
� Use color, italics, bold to emphasize (and do it consistently)
� Make eye contact with audience
� Practice your talk! Even for this class

