15-744 Computer Networking

Multicast

(some slides borrowed from Srini Seshan)

Multicast Routing

- Unicast: one source to one destination
- Multicast: one source to many destinations
- Main goal: efficient data distribution
 - Avoid data duplication within network

Overview

- IP Multicast Service Basics
- Routing: MOSPF/DVMRP
- Reliability: SRM
- Overlay Multicast

Example Applications

- Broadcast audio/video
- Push-based systems (e.g., BGP updates)
- · Software distribution
- Web-cache updates
- Teleconferencing (audio, video, shared whiteboard, text editor)
- Multi-player games
- Other distributed applications

IP Multicast Service Model

- · Each group identified by a single IP address
- Variable Size:
- Groups of any size; sparse or dense
- Variable Location:
 - Members may be located anywhere on Internet
- Dynamic membership:
- Members can join and leave at will
- Many-to-many
 - Not only one-to-many
- No central state
 - Group membership not known explicitly
- Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.

IP Multicast Addresses

· Class D IP addresses

- 224.0.0.0 - 239.255.255.255 1 1 1 0 Group ID

- · How to allocate these addresses?
 - Well-known addresses: IANA
 - Transient addresses: e.g., by "SDR" program
 - Assigned and reclaimed dynamically,

IP Multicast API

- Sending same as before
- Receiving two new operations
 - Join(group)
 - Leave(group)
 - Receive multicast packets for joined groups via normal IP-Receive operation
 - Implemented using socket options

Multicast Router Responsibilities

- Learn of the existence of multicast groups
 - (through advertisement)
- Identify links with group members
- Establish state to route packets
 - Replicate packets on appropriate interfaces
 - Routing entry:

Src, incoming interface List of outgoing interfaces

Overview

- IP Multicast Service Basics
- Routing: MOSPF/DVMRP
- · Reliability: SRM
- · Overlay Multicast

Routing Techniques

- Basic objective build distribution tree for multicast packets
- · Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
- Flood and prune
 - Begin by flooding traffic to entire network
 - Prune branches with no receivers
 - Example: DVMRP

Multicast OSPF (MOSPF)

- · Add-on to OSPF
 - Recall: flood routing announcements, each node gets entire topology
 - Now each router also keeps track of multicast group members
 - Routers mark link-state advertisement with groups that it has members for
- · Source-based trees
 - -Shortest paths to a node form a spanning tree
 - Routing algorithm augmented to compute shortestpath distribution tree from a source to any set of destinations
 - Packets from each source are forwarded on this tree

Impact on Route Computation

- Problems?
 - $O(N^2)$ state: one tree per potential sender
 - Can't pre-compute multicast trees for all possible sources
- · One solution: Compute on demand
 - When first packet from a source S to a group G arrives
 - Slow if sources send infrequently
- · Another solution: Shared trees
 - One tree per multicast group
 - Requires a rendezvous point
 - Unicast to RP, then RP multicasts it along tree
 - E.G., PIM Sparse Mode

Distance-Vector Multicast Routing

- Add on to DV routing (e.g., RIP)
 - Recall: each node locally determines shortestpath "next hop" for each destination
- Router forwards a packet if
 - The packet arrived from the link used to reach the source of the packet
 - Reverse path forwarding check (RPF)
 - Shortest-paths to a source form a spanning tree
 - If downstream links have not pruned the tree
 - Initially send to all routers then prune away branches

Overview

- IP Multicast Service Basics
- Routing: MOSPF/DVMRP
- Reliability: SRM
- Overlay Multicast

Multicast Transport Properties

- IP Multicast service guarantees?
 - Best effort
- What other properties would applications want?
 - Reliability
 - Congestion/Flow Control
 - In-order delivery
 - Etc.
- · Why doesn't IP Multicast provide these?
 - End-to-end principle: Can build other properties on top just like IP unicast
- · SRM tackles reliability

Straw man Reliability Solutions

- · Why not have each member ACK the sender?
 - ACK implosion: each packet sent generates N ACKs!
 - Requires sender to track all receiver state
- Why not have each member NACK the sender?
 - If data rate is slow, may not know that we're missing the last packet
 - Loss near the sender generates lots of NACKs; many receivers could share a bottleneck
 - SRM uses NACKs but in a more intelligent fashion

SRM Design Assumptions

- Example Application: digital whiteboard
- · Many-to-many
 - Any one in the group can send
- Named data units
 - E.G., 0000 => "point (3,4)", 0001 => "line (3,4)-(1,2)"
 - Each object sent has globally unique name
- Cooperative recovery
 - Any member can supply lost data to any other member
 - E.g., each member buffers all data

SRM Basic Operation

- Multicast periodic session messages telling everyone the "latest seqno"
- Loss detected (missing seqno) => multicast repair request (NACK) Request sent after a timer with time picked from uniform distribution $2^{\circ}[C_1, d_{S_A}, (C_1+C_2)^{\circ}d_{S_A}]$ Suppress request if we see a request and i++

 - => nodes closer to loss send request sooner (on expectation) => first request likely to suppress others (with reasonable C_1, C_2)
- Receive repair request && we have the data item => multicast repair
- - Request sent after a timer picked from uniform distribution:
 [D₁*d_{AB}, (D₁+D₂)*d_{AB}]
 => nodes closer to requestor will respond sooner (on expectation)
- Goal: Have few repair request/responses for the entire group when loss

Adaptive Parameter Adjustment

- Can trade-off higher delay for lower request/response duplicates
- **Probabilistic Suppression**: Higher $C_2 =>$ higher
 - expected delay, but less likely to have duplicates

 First request will likely reach all others before other request timers expire
- Deterministic Suppression: Members with lower C1 will likely send requests earlier
 - Mechanism 1: reduce C₁ when send request
 - => members near persistent loss will send sooner
 - Mechanism 2: reduce C₂ when sent requests but still receive duplicate requests from members much farther from source
 - => request more likely to reach far away members first

Adaptive Adjustment Algorithm

- · After sending request:
 - Decrease C₁
- Before setting timer:
 - If sent request already && seen dup requests from further away:
 - Decrease C₂
 Dup requests > T
 - Increase C₂
 - Dup requests < T && request delay > D
 - Decrease C₂
- · Converge on optimal delay-duplicate tradeoff
- Basically the same for D₁,D₂

Other Issues

- · Local Recovery: Scoping recovery requests/replies
 - Basic algorithm multicast them to entire group
 - Administrative boundaries + TTLs can scope requests/replies
- Congestion control:
 - Assume fixed rate
 - Why not reduce rate to bottleneck link?
 - => one bottlenecked receiver slows down the whole group

Overview

• IP Multicast Service Basics

• Routing: MOSPF/DVMRP

• Reliability: SRM

Overlay Multicast

Failure of IP Multicast

- Real world:

 Not widely deployed even after 15 years!

 Use carefully e.g., on LAN or campus, rarely over WAN

 Largest deployment: MBONE, using IP-tunnels to connect domains

 IP Multicast failings

 Scalability of routing protocols

 State required.

- Extra router state required
 Hard to manage
 Who gets to set up groups and when?
 Hard to implement TCP equivalent
 As we just saw with SRM

- Chicken-egg: No real applications

 Hard to get applications to use IP Multicast without existing wide deployment Economics, policy: Hard to get inter-domain support

 Who pays for packet duplication?

Potential Benefits Over IP Multicast

- · Quick deployment
- · All multicast state in end systems
- · Simplifies support for higher level functionality
 - Reliability, congestion control, etc.

Concerns with End System Multicast Self-organize recipients into multicast delivery overlay tree - Must be closely matched to real network topology to be efficient Performance concerns compared to IP Multicast - Increase in delay - Bandwidth waste (packet duplication)

- Not usually substantial problems

Concerns with End System Multicast

- Reality: Many users behind asymmetric DSL/Cable modems
 - Not enough upload bandwidth to forward!
 - -=> Must be leafs in the multicast tree
- Key Metric: Resource Index
 - forwarding capacity/total bandwidth demand
 - Measured ESM video groups have RI of 1-2...
 - -=> Building feasible tree is challenging (+ dealing with group dynamics, etc.)

Important Concepts

- Multicast provides support for efficient data delivery to multiple recipients
- Requirements for IP Multicast routing
- Keeping track of interested parties
- Building distribution tree
- Broadcast/suppression technique
- Build reliability, congestion control, in-order delivery on top
 - Just like with TCP/IP, but harder...
- Difficult to deploy new IP-layer functionality
- End system-based techniques can provide alternative
 - Easier to deploy