Wireless in the Real World

Principles

- Make every transmission count
 - E.g., reduce the # of collisions
 - E.g., drop packets early, not late
- Control errors
 - Fundamental problem in wless
- Maximize spatial reuse
 - Allow concurrent sends in different places
 - While not goofing up #1 and #2!

Problems

- Today: Deployments are chaotic
 - Unplanned: Lots of people deploy APs
 - More planned inside a campus, enterprise, etc.
 - Less planned at Starbucks...
 - Unmanaged
 - · Many deployments are "plug-and-go"
 - Becoming increasingly common as 802.11 becomes popular. Not just geeks!
- And it's hard in general.

Making Transmissions Count

• See previous lecture!

Error Control

- · Three techniques
 - ARQ (just like in wired networks)
 - FEC (also just like, but used more in wireless)
 - And .. Rate control.
- Remember our Shannon's law discussion
 - Reminder: Capacity = $B \times log(1 + S/N)$
 - Higher bitrates use encodings that are more sensitive to noise
 - If too many errors, can fall back to a lower rate encoding that's more robust to noise.
 - Often called "rate adaptation"

Rate Adaptation

- · General idea:
 - Observe channel conditions like SNR (signalto-noise ratio), bit errors, packet errors
 - Pick a transmission rate that will get best goodput
 - There are channel conditions when reducing the bitrate can greatly increase throughput – e.g., if a ½ decrease in bitrate gets you from 90% loss to 10% loss.

Simple rate adaptation scheme

- Watch packet error rate over window (K packets or T seconds)
- If loss rate > thresh_{high} (or SNR <, etc)
 - Reduce Tx rate
- If loss rate < thresh_{low}
 - Increase Tx rate
- Most devices support a discrete set of rates
 - -802.11 1, 2, 5.5, 11, etc.

Challenges in rate adaptation

- Channel conditions change over time
 - Loss rates must be measured over a window
- SNR estimates from the hardware are coarse, and don't always predict loss rate
- May be some overhead (time, transient interruptions, etc.) to changing rates

Error control

- Most fast modulations already include some form of FEC
 - Part of the difference between the rates is how much FEC is used.
- 802.11, etc. also include link-layer retransmissions
 - Relate to end-to-end argument?
 - Compare timescale involved
 - Needed to make 802.11 link layer work within the general requirements of IP ("reasonably low" loss)

Spatial Reuse

- Three knobs we can tune:
 - Scheduling: Who talks when (spatial div)
 - A-B-C-D-E -- F..
 - A->B, C->D, E-F
 - B->C, D->E
 - Frequency assignment (frequency div)
 - 802.11 has 11 "channels" in the US, but they're not completely independent
 - (draw frequency overlap)
 - Power assignment
 - Many radios can Tx at multiple power levels

Cellular Reuse

- Transmissions decay over distance
 - Spectrum can be reused in different areas
 - Different "LANs"
 - Decay is 1/R² in free space, 1/R⁴ in some

Frequency Allocation

 To have dense coverage Must have some overlap

- · But this will interfere.
- (Even w/out interference if you want 100% coverage)
- Answer: Channel allocation for nearby nodes
- Easy way: Cellular deployment. Offline, centralized graph coloring
- Hard way: Ad hoc, distributed, untrusting, ...

Ad hoc deployment

- Typically multiple hops between nodes
- Unplanned or semi-planned
- Typical applications:
 - Roofnet
 - Disaster recovery
 - Military
- Even though most wireless deployments are "cellular" systems, they exhibit many of the same challenges of ad hoc...

Power Control

- (diagram)
- Goal: Transmit at minimum necessary power to reach receiver
 - Minimizes interference with other nodes
 - Paper: Can double or more capacity, if done right.

Detils of Power Control

- Hard to do per-packet with many NICs
 - Some even might have to re-init (many ms)
- May have to balance power with rate
 - Reasonable goal: lowest power for max rate
 - But finding the empirically is hard! Many {power, rate} combinations, and not always easy to predict how each will perform
 - Alternate goal: lowest power for max needed rate
 - But this interacts with other people because you use more channel time to send the same data. Uh-oh.
 - · Nice example of the difficulty of local vs. global optimization

Power control summary

- More power:
 - Higher received signal strength
 - May enable faster rate (more S in S/N)
 - · May mean you occupy media for less time
 - Interferes with more people
- Less power
 - Interfere with fewer people
- Less power + less rate
 - Fewer people but for a longer time

Scaling Ad Hoc Networks

- Aggregate impact of far-away nodes
 - Each transmitter raises the "noise" level slightly, even if not enough on its own to degrade the signal enough (S/N...)
- The price of cooperation: In a multi-hop ad hoc network, how much time do you spend forwarding others traffic?
- Routing protocol scalability
 - (Next lecture! :-)

Aggregate Noise

- Assume that you can treat concurrent transmissions as noise
 - Example: CDMA spread-spectrum networks do exactly this
- · Nodes in a 2d space with constant density p
- Nodes talk to nearest node (multi-hop for far away)
- (This model applies to cooperation, too)
- (diagram)

contd

- Distance to neighbor ~ R₀ = 1/sqrt(p)
- Power level P, attenuation at distance r propto r⁻² (free space), so signal strength propto r²
- Total nodes in annulus @ distance r, width dr from recv:

 $2\pi rpdr$

• Total interference: $\int_{0}^{\infty} \frac{2\pi r p dr}{r^2}$

Noise

- · Aggregate noise is infinite!
- But the world isn't. Phew. If M nodes total, Rmax node distance is pi R^2 maxp
 M
- Solving,integrate from 0 Rmax total signalto-noise falls off as 1/log M
- Not too bad...

The Price of Cooperation

- In ad hoc, how much of each nodes' capacity is used for others?
 - Answer depends strongly on workload.
 - If random senders with random receivers:
 - Path from sender \rightarrow receiver is length \sqrt{N}
 - So every transmission consumes of the network capacity $\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$
 - Network has a total capacity of N transmits/time
 - Aggregate network capacity of N nodes scales as sqrt(N)
 - Per-node capacity is $\frac{1}{\sqrt{N}}$

Locality

- Previous model assumed random-random communication
- Locality can help you
 - E.g., geographically dispersed "sinks" to the Internet: Roofnet-style communication
 - E.g., local computation and summary: sensor-network communication
 - Example: Computing the avg, max, min temp
 - "Data" or "content"-centric networking (caching, etc.)

Aside: Flipping Power On Its Head: Power Savings

- Which uses less power?
 - Direct sensor -> base station Tx
 - Total Tx power: distance^2
 - Sensor -> sensor -> base station?
 - Total Tx power: n * (distance/n) ^2 =~ d^2 / n
 - Why? Radios are omnidirectional, but only one direction matters. Multi-hop approximates directionality.
- Power savings often makes up for multi-hop capacity
 - These devices are *very* power constrained!
- Reality: Many systems don't use adaptive power control.
 This is active research, and fun stuff.

Summary

- Make every transmission count
 - MAC protocols from last time, mostly
- Control errors
 - ARQ, FEC, and rate adaptation
- Maximize spatial reuse
 - Scheduling (often via MAC), channel assignment, power adaptation
- Scaling through communication locality
 - e.g., sensor net-style communication