Simultaneous Scalability and Security
for Data-Intensive Web Applications

Amit Manijhi+, Anastassia Ailamaki*, Bruce M. Maggs*,
Todd C. Mowry~*t, Christopher Olston*, Anthony Tomasic*

*Carnegie Mellon University

fIntel Research Pittsburgh

{manijhi,natassa,bmm,tcm,olston,tomasic+}@cs.cmu.edu

ABSTRACT

For Web applications in which the database component is
the bottleneck, scalability can be provided by a third-party
Database Scalability Service Provider (DSSP) that caches
application data and supplies query answers on behalf of the
application. Cost-effective DSSPs will need to cache data
from many applications, inevitably raising concerns about
security. However, if all data passing through a DSSP is
encrypted to enhance security, then data updates trigger
invalidation of large regions of cache. Consequently, achiev-
ing good scalability becomes virtually impossible. There is
a tradeoff between security and scalability, which requires
careful consideration.

In this paper we study the security-scalability tradeoff,
both formally and empirically. We begin by providing a
method for statically identifying segments of the database
that can be encrypted without impacting scalability. Exper-
iments over a prototype DSSP system show the effectiveness
of our static analysis method—for all three realistic bench-
mark applications that we study, our method enables a sig-
nificant fraction of the database to be encrypted without
impacting scalability. Moreover, most of the data that can
be encrypted without impacting scalability is of the type
that application designers will want to encrypt, all other
things being equal. Based on our static analysis method, we
propose a new scalability-conscious security design method-
ology that features: (a) compulsory encryption of highly sen-
sitive data like credit card information, and (b) encryption
of data for which encryption does not impair scalability. As
a result, the security-scalability tradeoff needs to be consid-
ered only over data for which encryption impacts scalability,
thus greatly simplifying the task of managing the tradeoff.

1. INTRODUCTION

Applications deployed on the Internet are immediately ac-
cessible to a vast population of potential users. As a result,
they tend to experience fluctuating and unpredictable load,

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyoogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

S GMOD 2006, June 27-29, 2006, Chicago, lllinois, USA.

Copyright 2006 ACM 1-59593-256-9/06/000655.00.

wwsf 07 7S
AR R,

Content Delivery Network

Database
querles/updatef / $ Query result:
= j

S Database Scalability Service Provider
N
Database

quenes/updateJ/L / N /RQuery results

home

servers O Ej O Ej
Figure 1: Scalable architecture for database-
intensive Web applications. In this work, we fo-
cus on the Database Scalability Service Provider
(DSSP), the shaded cloud.

especially due to events such as breaking news (e.g., 9/11)
and sudden popularity spikes (e.g., the “Slashdot Effect”).
If the application uses a commodity server, the (peak) cus-
tomer load on the application may easily exceed the capacity
of the server. The approach of over-provisioning—to invest
in a server farm, and to hire skilled personnel to maintain
it—is not only expensive but also risky because the expected
customers might not show up. An appealing alternative is
to contract with a scalability service that charges on a per
usage basis. Content Delivery Networks (CDNs) [9] provide
such service by maintaining a large, shared infrastructure
to absorb load spikes that may occur for any individual ap-
plication. However, CDNs currently do not provide a way
for scaling the database component of a Web application.
Hence the CDN solution is not sufficient when the database
system is the bottleneck, as in several important Web appli-
cations like bulletin-boards and e-commerce applications.
To support applications where the database is the bot-
tleneck, previous work [23] has proposed using a third-party
Database Scalability Service Provider (DSSP). A DSSP caches
application data and supplies query answers on behalf of the
application. To be cost-effective, DSSPs will need to cache
data from “home servers” of many applications (Figure 1
shows the resulting architecture), inevitably raising concerns

update query CDN
1
NG & DSSP
invalidate 2///////? (untrusted)
% A

(upon miss)
home
organization

Figure 2: Query, update, and invalidation pathways.

{ | sELECT toy_id FROM toys WHERE toy name=7?

T | SELECT qty FROM toys WHERE toy_id=?7

3T SELECT cust_name FROM customers WHERE cust_id=?

UL | DELETE FROM toys WHERE toy_id=?

Table 1: An example toystore application, de-
noted SIMPLE-TOYSTORE, with three query templates
QT.QT.QT, one update template U, and two base
relations: toys with attributes toy_id, toy_name, qty,
and customers with attributes cust_id, cust_name.
The question marks indicate parameters bound at
execution time.

about security’. Such concerns have been increasing lately,
as borne by well-publicized instances of database theft [25]
and the security legislation in the California Senate [7].

To use untrusted DSSPs with confidence, applications must:

e Prevent the DSSP from tampering with mas-
ter data. The DSSP caches read-only copies, which
are kept consistent with master copies maintained at
application home servers via invalidation. All updates
are applied to master copies directly. (In many Web
applications, updates are infrequent; so the load on
home servers due to updates is low.)

e Prevent unauthorized reading of data that passes
through the DSSP. A straightforward way to se-
cure data passing through the DSSP is to encrypt
such data. The DSSP then stores encrypted data. To
permit answering of queries, one can use encryption
schemes that permit query processing on encrypted
data. However, recent work [15] has shown that only
weak encryption can be used if queries are to be exe-
cuted efficiently on the DSSP. Therefore, with this op-
tion, security of all data might be compromised. The
only remaining alternative then is to store (encrypted)
query results in the form of materialized views at the
DSSP. Answering a query requires only a lookup op-
eration, permitting arbitrarily strong encryption.

Figure 2 shows the flow of queries, updates, and invali-
dations in the architecture implied by the above discussion.
In the figure, diagonal shading denotes information that is
subject to encryption. The DSSP maintains a cache of (en-
crypted) query results. (Encrypted) queries are answered

!By security, we mean that (1) the DSSP administrator’s
are unable to access an application’s sensitive data, and (2)
applications are unable to access each other’s sensitive data
via the DSSP.

Accessible?
Temp- | Param- | Query | Invalidation
lates eters Results | Condition
No No No All of QT, QF, QF
Yes No No All QT all QF
Yes Yes No Al QT, Q¥ if toy_id=5
Yes Yes Yes QT if toy-id=5,
Q7 if toy_id=5
Table 2: Invalidations differ depending on the

amount of information the DSSP can access. The
table is for update U] with parameter 5.

from the cache when possible; cache misses result in queries
being forwarded to the home organization. All updates are
routed to the home organization via the DSSP (in encrypted
form). The DSSP monitors completed updates, and invali-
dates cached query results as needed to ensure consistency.
(In our architecture, the home organization is free from the
overhead of participating in invalidation decisions.)

1.1 Security-Scalability Tradeoff

In this work, we study the security-scalability tradeoff
that arises when DSSPs are employed. To illustrate the
presence of such a tradeoff, we introduce a simple example
application called SIMPLE-TOYSTORE, specified in Table 1.
We focus on the application’s database access templates—
queries or updates missing zero or more parameter values.
Table 2 lists the invalidations the DSSP needs to make on
seeing a specific update in four different scenarios; each sce-
nario is represented by a row of the table. The scenarios
differ in what information the DSSP is able to access. For
example, if no information is accessible, i.e., all data is en-
crypted, as in the first row, then all cached query results are
invalidated on seeing an instance of update Uf. However,
if the template information is accessible, as in the second
row, then cached query results of all instances of only QT
and Q% are invalidated. As the information available to a
DSSP increases (moving down the rows), the number of in-
validations it needs to make decreases, thereby increasing
scalability.

Encryption of queries, updates and data for security pur-
poses limits the information available to the DSSP for mak-
ing invalidation decisions. With limited information, the
DSSP is forced to employ conservative invalidation strate-
gies to maintain consistency, resulting in excess invalidations
and reduced scalability. This basic tradeoff between secu-
rity and scalability is illustrated quantitatively in Figure 3,
which shows measurements of the TCP-W online bookstore
benchmark executed on a prototype DSSP system we have
built (details are provided in Section 5). The vertical axis
plots scalability, measured as the number of concurrent users
that can be supported while keeping response times within
acceptable limits. The horizontal axis plots a simple mea-
sure of security: the number of query templates embedded
in the bookstore application for which query results are en-
crypted as they pass through the DSSP. It is straightfor-
ward to achieve either good security or good scalability by
encrypting either all data or no data. Achieving good scal-
ability and adequate security simultaneously requires more
thought.

=)
[]
S 800 | No Encryption Our Approach
s
>
(2]
(2]
© 600 r
23
g
®©5 400
33
8 o
S 00 L Full Encryption
[}
Q
€
3
R

1 1 1 J

7 14 21 28
Security
(number of query templates with encrypted results)
Figure 3: Security-scalability tradeoff (TPC-W
BOOKSTORE benchmark).

1.2 Managing the Security-Scalability
Tradeoff

There is often room to maneuver with respect to what
data needs to be encrypted. Flexibility arises because in
most Web applications, not all data is equally sensitive. It
may range from highly-sensitive data such as credit card
information, to moderately sensitive data such as inventory
records, to completely insensitive data such as the weekly
best-seller list, which is made public anyway.

In general, management of the security-scalability trade-
off requires careful assessment of data sensitivity, weighed
against scalability goals. Unfortunately, it is nontrivial to
assess the scalability implications of ensuring the security of
a particular portion of the database. Furthermore, for data
that is not entirely insensitive, it can be difficult to quantify
sensitivity in a meaningful way. Therefore it is not immedi-
ately clear how to best approach the task of managing the
security-scalability tradeoff.

In this paper we present a convenient shortcut, which sim-
plifies the task substantially while avoiding undesirable com-
promises with respect to security or scalability. The idea is
to identify portions of the database that can be encrypted
while incurring no additional penalty to scalability. The out-
come of applying this idea is shown in the upper-right point
in Figure 3, labeled “our approach.” The data that can be
encrypted using our approach does not need to be considered
for the security-scalability tradeoff, thus greatly simplifying
the task of managing the tradeoff. Hence, for the benchmark
applications we have evaluated, our approach automatically
achieves good security? without compromising scalability.

1.3 Related Work

Prior work related to ours can be partitioned into two cat-
egories: database services and view invalidation. We discuss
each in turn.

1.3.1 Database Services

Existing work on providing database services can be clas-
sified into two categories: the Database Outsourcing (DO)
model and the Database Scalability Service Provider (DSSP)

2See Section 5.4 for details on what data is kept private
under our approach.

model.

In the DO model, an application outsources all aspects of
management of its database to a third party [12]. A key con-
cern is to safeguard the application’s sensitive data. Since
the DO provider houses the application’s entire database,
one way to ensure security of an application’s data is to
store an encrypted database at the DO provider, and use en-
cryption schemes that permit query processing on encrypted
data [2, 11, 13]. Aggarwal et al. [1] suggest an alternative—
distribute data across multiple independent providers that
do not communicate with one another.

In contrast to work in the context of the DO model, we
consider the DSSP model, in which only database scalabil-
ity, and not full-fledged database management, is outsourced
to a third party [23]. Under the DSSP model, application
providers retain master copies of their data on their own
systems, with the DSSP only caching and serving read-only
copies on their behalf. In our DSSP approach, query ex-
ecution on third party servers is not needed, so arbitrar-
ily strong encryption of the remotely-cached data is possi-
ble. We contend that from a security and data integrity
standpoint, the scalability provider model is more attrac-
tive than the DO model in the case of Web applications
with read/write workloads (e.g., e-commerce applications).

Other ongoing efforts to create DSSP technology include
the DBCache [3, 18] and DBProxy [4] projects at IBM Re-
search, and the CachePortal project [17] at NEC Laborato-
ries. To the best of our knowledge, no prior work has studied
security issues in the DSSP model, which is the focus of this
paper.

1.3.2 View Invalidation

There has been prior work pertaining to invalidation of
cached materialized views. Choi and Luo [6] proposed a
technique that leverages statically-available query/update
templates to speed up runtime invalidation decisions. Can-
dan et al. [8] introduced techniques for deciding whether
to invalidate cached views in response to database updates.
These techniques leverage “polling queries” to inspect por-
tions of the database not available in the materialized view.
The need to invalidate a view in response to a particular up-
date can in some cases be ruled out by analysis of the view
definition and update statements alone, without inspecting
any other data. Levy and Sagiv [16] provide methods of
ruling query statements (and hence view definitions) inde-
pendent of updates in many practical cases, although the
general query/update independence problem is undecidable.

With our work, the focus is not on developing new strate-
gies for deciding whether to invalidate cached views. Rather,
we develop a formal characterization of view invalidation
strategies in terms of what data they access, as a basis for
studying the tradeoff between data security and scalability.

1.4 Our Contributions

We develop a formal characterization of view invalidation
strategies in terms of what data they access, and use the
formal characterization to cleanly formulate the security-
scalability management problem. We then present a method
for automatically identifying data that can be encrypted
without reducing scalability at all. Our method is based
on static analysis of the data access templates of a given
Web application. It determines which query results, query
statements, and update statements associated with the ap-

plication can be encrypted without impacting scalability.

Our experiments over a prototype DSSP system (detailed
in Section 5) show that several Web applications can en-
crypt the majority of query results, as well as a substantial
fraction of parameters to query and update statements, with
no scalability penalty. Furthermore, much of the data that
is secured at no cost, falls into the moderately sensitive cat-
egory. This type of data would not tend to be classified
as compulsory for encryption, yet application designers may
well choose to encrypt it, if armed with the knowledge that
doing so does not impact scalability.

Our static analysis method enables a new scalability-cons-
cious security design methodology that greatly simplifies the
task of managing the security-scalability tradeoff: First, an
administrator identifies highly-sensitive data (perhaps by
applying a security law) and sets it aside for compulsory
encryption. Second, our static analysis method is invoked
to determine which of the remaining data can be encrypted
without impacting scalability. As a result, the administrator
only needs to weigh the security-scalability tradeoff over the
substantially reduced set of data items for which encryption
may have scalability implications.

1.5 Outline

To underpin our study of the security-scalability tradeoff,
we begin in Section 2 by presenting our formal characteriza-
tion of cache invalidation strategies, each of which represents
a natural choice in the space of security-scalability options.
Section 3 describes our methodology for management of the
tradeoff, while Section 4 presents our main contribution: a
static analysis method for determining which data can be
encrypted without impacting scalability. In Section 5 we
present our empirical findings, which point to the effective-
ness of our technique. We summarize in Section 6.

2. FRAMEWORK FOR STUDYING THE
SECURITY-SCALABILITY TRADEOFF

In this section we characterize when an update necessar-
ily causes invalidation of the cached result of a query, as
a function of the information that is accessible. This for-
mal characterization underpins our study of the security-
scalability tradeoff. We begin in Section 2.1 by providing
the details of our basic query and update model, and intro-
ducing the terminology and notation we use in the rest of
the paper. Then, in Section 2.2 we characterize four distinct
classes of invalidation strategies, i.e., strategies for deciding
when to invalidate a cached query result in response to an
update, that differ in the amount of information available
to them. Finally, in Section 2.3 we study the mixed invali-
dation strategies that arise when the information available
for making invalidation decisions varies across queries and
across updates.

2.1 Query and Update Model

The database components of a Web application consist of
a fixed set of query templates, and a fixed set of update tem-
plates (Table 1 shows an example). Let Q7 = {QT,...,QT}
and UT = {U{,...,UL} denote the set of query and up-
date templates, respectively. A query @ is composed of a
query template QT to which parameters QF are attached
at execution time. Formally, @ = QT (QT). Likewise, U =
UT(UT). Let Q[D] denote the result of evaluating query Q

over database D. Let (D + U) denote the database state re-
sulting from application of update U. A sequence of queries
and updates issued at runtime constitutes a workload.

Based on our study of three benchmark applications (de-
tails in Section 5.1), the query language is restricted to
select-project-join (SPJ) queries having only conjunctive se-
lection predicates, augmented with optional order-by and
top-k constructs. SPJ queries are relational expressions con-
structed from any combination of project, select and join
operations. As in previous work [5, 24], the selection oper-
ations in the SPJ queries can only be arithmetic predicates
having one of the five comparison operators {<, <, >, > =}.
The order-by construct affects tuple ordering in the result;
and the top-k construct is equivalent to returning the first k
tuples from the result of the query executed without the top-
k construct. We assume multi-set operation; the projection
operation does not eliminate duplicates.

The update language permits three kinds of updates: in-
sertions, deletions and modifications. Each insertion state-
ment fully specifies a row of values to be added to some
relation. Each deletion statement specifies an arithmetic
predicate over columns of a relation. Rows satisfying the
predicate are to be deleted. Each modification statement
modifies non-key attributes of the row (of a relation) that
satisfies an equality predicate over the primary key of the
relation.

2.1.1 Assumptions for simplifying the presentation
of our analysis

To simplify the presentation of our analysis (Section 2.3
and Section 4) of which information can be encrypted with-
out impacting scalability, we make three assumptions about
the update and query templates: First, each selection predi-
cate either compares attribute values across two relations or
compares a value with a constant. Second, no constants that
might aid in invalidations are embedded in a query or update
template. Third, no queries compute Cartesian Products,
i.e., each query has a non-empty selection predicate. The
above assumptions always hold for two of three benchmark
applications we study, and are violated in less than 3% of
the update/query template pairs for the third benchmark.
Whenever the assumptions do not hold, no encryption is rec-
ommended for the given update/query template pair. This
conservative strategy ensures that our analysis never recom-
mends encrypting any data, for which encryption impacts
scalability.

To simplify the presentation further, we make two ad-
ditional assumptions about the execution of updates and
queries: First, no query whose result is subject to invalida-
tion by either an insertion or a deletion statement in the
workload returns an empty result set. Second, each update
has some effect on the database, i.e., for each update U,
D # |[D + U]. In our experiments with all three of the
benchmark applications we study, these assumptions always
hold, and cause no loss of scalability.

2.2 Formal Characterization of
View Invalidation Strategies

Recall that in our current design, the DSSP caches views,
which are results of queries. A view invalidation strategy S
is a function whose arguments possibly include an update
statement, a query statement, and other information such
as a cached query result. It evaluates to one of I (for “invali-

Correct view—inspection strategies

Correct statement—inspection strategies

Correct template—inspection strategies

Correct blind strategies

(Minimal blind strategies)

(Minimal template—inspection strategies)

(Minimal statement—inspection strategies)

(Minimal view—inspection strategies)

A J

Figure 4: Relationships among classes of view inval-
idation strategies, in the general case.

date”) or DNI (for “do not invalidate”). A view invalidation
strategy is correct if and only if whenever a view changes in
response to an update, all corresponding cached instances of
that view are invalidated. A formal definition of correctness
is as follows:

Correctness: A view invalidation strategy S is correct
iff for any query Q, database D, and update U, (Q[D] #
QD+ U)) = (S(U,Q,...)=1I).

(Assume that updates are applied sequentially, and that all
invalidations necessitated by one update are carried out be-
fore the next update is applied.)

A view invalidation strategy is invoked whenever an up-
date occurs. Based on what information they access in mak-
ing invalidation decisions, four classes of view invalidation
strategies, one for each row of Table 2, may be defined as
follows: (a) Blind Strategy corresponding to the first row,
(b) Template Inspection Strategy (TIS) correspond-
ing to the second row, (¢) Statement-Inspection Strat-
egy (SIS) corresponding to the third row, and (d) View-
Inspection Strategy (VIS) corresponding to the last row.
In each case, the strategy can only use the accessible in-
formation for making invalidation decisions. We provide a
formal definition for each strategy in the extended technical
report version of this paper [19].

These four view invalidation strategies, natural points in
the invalidation strategy design space, are largely based on
previous work in the area of view invalidations. For exam-
ple, the methods of [10] can be used to implement a view-
inspection strategy. Similarly, the methods of [16] can be
used to implement a template- or a statement-inspection
strategy. Finally, implementing a blind strategy is simple:
invalidate all cached query results on any update.

Also, every correct blind strategy is a correct template-
inspection strategy, every correct template-inspection strat-
egy is a correct statement-inspection strategy, and every cor-
rect statement-inspection strategy is a correct view-inspection
strategy. The relationships are depicted in Figure 4.

We now define minimality:

Minimality: A view invalidation strategy S belonging to
class C is minimal if and only if it is correct and there exists
no query statement @), update statement U, and database D
such that S invalidates the view Q[D] in response to U, while

FEzxposure levels: blind template stmt view

greater exposure (less encryption)

greater security

Figure 5: Security gradient.

another correct view invalidation strategy in class C does
not. Corresponding to each class of invalidation strategy,
the criterion for a minimal blind strategy (MBS), a minimal
template-inspection strategy (MTIS), a minimal statement-
inspection strategy (MSIS), and a minimal view-inspection
strategy (MVIS), can be arrived at, by applying the defini-
tion of minimality to the respective class.

For arbitrary databases and workloads, no correct blind
strategy is a minimal template-inspection strategy. Simi-
larly, no correct template-inspection strategy is a minimal
statement-inspection strategy and no correct statement-ins-
pection strategy is a minimal view-inspection strategy. (We
omit formal proofs for brevity.) Figure 4 depicts the rela-
tionships among classes of view invalidation strategies as a
Venn diagram.

The choice of invalidation strategy determines what infor-
mation can be encrypted. On the one extreme, if a view-
inspection strategy is used, neither queries, nor updates, nor
cached query results can be encrypted. On the other ex-
treme, if a blind strategy is used, all queries, updates, and
cached query results can be encrypted.®

2.3 Mixed Invalidation Strategies

Typically, not all of an application’s data is equally sen-
sitive. An administrator may wish to control encryption
of information at a per-template granularity. To control
what information to encrypt, the administrator chooses an
exposure level E(UT) € {blind, template,stmt} for each
update template UT € U7, and an exposure level E(QT) €
{blind, template, stmt, view} for each query template Q” €
QT Each exposure level exposes some information of a
query or an update; all information not exposed can then
be encrypted. The blind exposure level exposes nothing;
template exposes the template; stmt exposes the entire
query or update statement (i.e., template and parameters);
and view (only for query templates) exposes the query state-
ment and the result of executing the query. Figure 5 shows
the range of exposure level options.

Figure 6 shows the possible exposure level combinations
for a given UL /Q” pair (the contents of the boxes may be
ignored for now). When exposure level choices are made in-
dependently for every update and query template, the invali-
dation strategy to use may be determined at the granularity
of update/query template pairs. In Figure 6, the shaded
boxes correspond to the four classes of invalidation strate-
gies introduced in Section 2.2. (We discuss the unshaded
boxes shortly.)

3Note that deterministic encryption is required for correct
caching mechanics. To check whether a given query can be
answered from the cache, a lookup operation is required to
check whether the DSSP has a cached copy of the query
result. For a VIS or SIS, the query statement serves as
the lookup key. For a TIS, the query template along with
encrypted parameters are used. For a BS, the encrypted
query statement is used as the lookup key.

Query
blind template stmt view
£ blind 1 1 1|1
Etemplate 1 Aij Aij | Aij
P stmt 1 Aij Bij | Cy;
Figure 6: An Invalidation Probability Matrix

IPMUS, Q7).

2.3.1 Invalidation Probabilities

In our approach, exposure level choices determine the mix
of invalidation strategies employed. Given a workload, the
invalidation strategy used for a given U” /Q7 pair in turn
determines the invalidation probability—the likelihood that
the invalidation strategy invalidates (the result of) an in-
stance of the query template on seeing an instance of the
update template (where probability distribution over tem-
plate instances are derived from the workload). Invali-
dation probabilities also depend on the database, and may
change over time. In general it is difficult to estimate these
(dynamic) quantities accurately, but as we will see we can
find useful invariant relationships among them using static
analysis alone. For the purpose of our static analysis, we
represent the invalidation probabilities for different choices
of exposure levels as a matrix. An Invalidation Probability
Matriz IPM (U], Q?), illustrated in Figure 6, contains inval-
idation probability values for each combination of exposure
levels for U;" and Q] . (Aij, Bij, and Cy; are placeholders
for invalidation probabilities that depend on workload and
database characteristics.)

IPM’s obey the following properties:

Property 1: The invalidation probability equals 1 if either
exposure level is blind. Clearly, whenever no information is
available about either update U or query Q, for correctness,
the cached result of Q must be invalidated whenever any
update U occurs.

Property 2: The invalidation probability is the same for
all cases in which one exposure level is template and the
other is some exposure level other than blind. (We denote
this invalidation probability by A;; € [0,1].) Recall from
Section 2.1.1 our assumptions that the selection predicates
cannot compare two database values of the same relation
and there are no constants in the update (query) templates.
Under these assumptions, knowledge of the query (update)
parameters but not the update (query) parameters does not
aid in reducing invalidations because the query (update) pa-
rameters cannot be compared to anything. Similarly, knowl-
edge of the query result but not the update parameters does
not aid in reducing invalidations. (We omit formal proofs
for brevity.)

Property 3: The invalidation probabilities constitute a gra-
dient as we move from top-left to bottom-right in Figure 6,
ie.,, 1 > A;j; > B;j > C;; > 0. Clearly, under minimal in-
validation strategies, invalidations cannot increase if more
information is available for making invalidation decisions.
From the above discussion, it follows that invalidation
strategy classes corresponding to unshaded boxes in Fig-
ure 6 are of no interest since they are dominated by those
corresponding to shaded boxes, i.e., the shaded boxes permit
lower exposure while offering the same invalidation probabil-
ity. In certain instances, additional domination relationships

can be found. First, for certain update/query template pairs
Ul /Q7, it can be shown that A;; = 1 (meaning minimal
template inspection invalidation strategies are equivalent to
minimal blind strategies for such update/query template
pairs). Similarly, in some cases B;; = A;; (meaning min-
imal statement inspection strategies are equivalent to min-
imal template inspection strategies for such update/query
template pairs), and in some cases Cj; = B;; (meaning
minimal view inspection strategies are equivalent to mini-
mal statement inspection strategies for such update/query
template pairs). We examine how to identify and exploit
such cases in Section 4. Before we approach this topic, we
first describe our overall approach to managing the security-
scalability tradeoff while meeting scalability requirements.

3. OVERVIEW OF APPROACH

In this section we outline our approach for managing the
security-scalability tradeoff, given scalability requirements.
As Figure 5 shows, one may control security by adjusting the
exposure level of an application’s update and query tem-
plates. We first provide our approach in Section 3.1, and
then present a brief example in Section 3.2 that illustrates
the approach.

3.1 Our Approach

A natural approach to solve the security-scalability man-
agement problem is to model it as a constrained optimiza-
tion problem where each potential solution, i.e., an assign-
ment of an exposure level to every template of the applica-
tion, has an “overhead” and a “security” value; the objective
is to maximize the “security” value while keeping the “over-
head” below a given threshold. However, the approach is
impractical because assigning meaningful security values to,
and predicting overhead values of, each potential solution is
virtually impossible.

We advocate a new scalability-conscious security design
methodology, which uses the following practical three-step
approach for managing the security-scalability tradeoff, given
a scalability requirement:

1. Beginning with maximum exposure for all templates,
i.e., exposure level stmt for each update template and
exposure level view for each query template, reduce ex-
posure levels (i.e., move to the left in Figure 5) based
on cases in which data absolutely must be encrypted.
Such requirements may be decided in an ad-hoc man-
ner, or based on a data privacy law such as [7].

2. Using our static analysis techniques (described shortly),
reduce exposure level of each template for which doing
so does not impact scalability.

3. Prioritize remaining exposure level reduction possibil-
ities based on security considerations and adjust with
respect to the tradeoff with scalability.

Step 2 is the focus of our work. We divide Step 2 into two
sub-steps:
Step 2(a): Characterize IPM domination relation-
ships. Determine for each UiT/QjT pair whether (a) A;; = 1,
(b) B;; = Ajj, and (¢) Ci; = Bij. Identifying these relation-
ships is a challenge; Section 4 is dedicated to this task.
Step 2(b): Eliminate high-exposure options when-
ever possible without hurting scalability. The inputs

QT | SELECT toy_id FROM toys WHERE toy_name=7

QY | SELECT qty FROM toys WHERE toy_id=?

Q3T SELECT cust_name FROM customers, credit_card

WHERE cust_id=cid and zip_code=7

U{ | DELETE FROM toys WHERE toy_id=?

UQT INSERT INTO credit._card (cid, number, zip_code)
VALUES (7, 7, ?7)

Table 3: A more elaborate example TOYSTORE appli-
cation having three query templates QT , Q7. Q7, two
update templates U{,U] and three base relations:
toys with attributes toy_id, toy_name, qty, customers
with attributes cust_id, cust_name, and credit_card
with attributes cid, number, zip_code. Attribute
credit_card.cid is a foreign key into the customers
relation. The question marks indicate parameters
bound at execution time.

to this step include: (a) IPM tables with the information
from IPM characterization (Step 2a) plugged in, and (b) the
initial exposure levels of templates based on requirements
that certain data must absolutely be encrypted (Step 1).
The goal of Step 2b is to maximally reduce the exposure
level for each template without impacting scalability. Since
scalability is impacted whenever invalidation probabilities
change, the key idea in achieving maximal reduction of ex-
posure levels is to ensure that the invalidation probability
of no update/query template pair (as given by the IPM ta-
ble) changes due to a reduction in the exposure level of a
template.

A simple greedy algorithm can be used for Step 2b. It it-
erates over update and query templates, reducing template
exposure levels when doing so incurs no increase in invali-
dation probability for any update/query template pair. The
algorithm terminates when no further reduction is possible
for any template. The order in which templates are consid-
ered does not affect the final outcome.

We next provide an example that illustrates our approach.

3.2 Example

Consider the TOYSTORE application shown in Table 3, an
extension of our earlier SIMPLE-TOYSTORE application of Ta-
ble 1. As Step 1, the administrator may well decide that
credit card numbers are not to be exposed, and accordingly
reduce the exposure level of U7 to template. Using the
notation introduced in Section 2.3, E(U7) = template.

The next step is Step 2a, in which the IPM domination
relationships are characterized. The results for the TOYS-
TORE application are provided in Table 4. To understand
intuitively how these relationships are determined, let us fo-
cus on the first row, i.e., entries corresponding to U . Since
no instance of U{ can affect the result of any instance of
QY. no instance of U will trigger invalidation of the re-
sult of any instance of Q¥, so A13 = 0. However, since an
instance of Ui can affect the result of an instance of Q3
or QIT, Ai2 > 0 and A11 > 0. As we show in Section 4,
whenever Aij > 0, Aij = 1. Hence, Aj1 = A2 = 1. Fur-
ther, using our analysis in Section 4, it can be inferred that
Bi1 = Aii, i.e., knowledge of the parameters of U1T and
QT does not aid in reducing invalidations. Also Cia = Bia,
i.e., additional knowledge of the content of the result of an

Q1 (=1) | QF (j=2) | @QF (j=3)

A =1 A =1 Az =0
Ut Bi1 = A1n1 | Bia < A1z | Biz = A3
(i=1) | C.u < Bu1 | Ci2 =Bz | C13 = Bus

A1 =0 Az =0 Az =1
U5 B21 = Az1 | Baa = Azz | Baz < Aas
(i=2) | C21 = Ba1 | O = B2z | Ca3 = Bos

Table 4: Summary of IPM characterization for the
example TOYSTORE application.

instance of Q%, when the parameters of U{ and Q% are
already known, does not aid in reducing invalidations. Fi-
nally, since A1z = 0, A13 = B13 = C13 holds trivially due to
Property 3 (Section 2.3).

Step 2b follows the IPM characterization step. When in-
voked on the TOYSTORE application (Table 3) with inputs
as E(UF) = template (Step 1) and Table 4 (Step 2a), the
algorithm used for Step 2b reduces exposure level of query
template Q7 from view to template, and of query template
QY from view to stmt. By reducing the exposure level in
this way, the inventory (quantity of toys in stock) and the
customer demographic (customers in an area) are no longer
exposed. An application provider may prefer not to expose
this moderately sensitive information, all else being equal.
Further, we confirm that the additional security this reduc-
tion in exposure enables does not impact scalability. As be-
fore, cached results of instances of QI are only invalidated
by instances of U{ if the toy_id match, and cached results
of all instances of Q7 are invalidated by any instance of Uy .

Having presented our overall approach, we next describe
how to determine IPM domination relationships using static
analysis (Step 2a).

4. |PM CHARACTERIZATION

Recall from Section 3.1 that IPM characterization entails:
determining statically for each UZT/Q]T pair, whether (a)
Aij = 1, (b) Bij = Aij, and (C) Cij = Bij. We discuss
in Sections 4.2 — 4.4, how to determine for a given UT /QT
pair whether each of these relationships holds. Then, in
Section 4.5 we discuss how additional information, beyond
those considered up to now, affect IPM values. But, first in
Section 4.1, we introduce some terminology for classifying
query and update templates in a way that is useful for our
analysis.

4.1 Query and Update Classification

Define selection attributes of update template UT (de-
noted S(UT)) to be attributes used in any selection predi-
cate (i.e., a selection or a join condition) of UT. (If U” is an
insertion, S(UT) = {}.) Further define modified attributes
(M(UT)) of UT, selection attributes (S(QT)) of query tem-
plate QT, and preserved attributes (P(QT)) of QT as in Ta-
ble 5. If U7 is an insertion or a deletion, M (U™) is defined to
be the set of all attributes in the table in which the insertion
or deletion takes place. For the TOYSTORE application (Ta-
ble 3), S(QT) = {toys.toy name}, P(QT) = {toys.toy_id},
S(UT) = {toys.toy_id}, M(U{) = {toys.toy_id,
toys.toy_name, toys.qty}.

Recall from Section 2.1 that queries are restricted to be
Select-Project-Join (SPJ) queries having conjunctive selec-
tion predicates, augmented with optional order-by, and top-
k constructs. Further define two (possibly overlapping) classes

Symbol | Meaning
S(UTY | Attributes used in any of the selection predicates
(i.e., selection and join conditions) of U”
M(UT) | Attributes modified by UT
S(QT) | Attributes used in selection predicates or
order-by constructs of Q7
P(QT) | Attributes retained in the result of QT
Table 5: Notation for aspects of templates.
QT e¢ Q@ is a query with only equality joins
QT e N Q is a SPJ query with
no top-k constructs
vlez U is an insertion
urep U is a deletion
U e m U is a modification

UT is ignorable for QT | (UT,QT) € G &
(ur,Q") eg) MUT) N (PR US@QM)) ={}

Q" is result-unhelpful | (UT,QT) e H <
for UT (U, Q") e H) | S(UT)n P(QT) = {}

Table 6: Query and update classes.

of queries: ones with only equality joins or no joins (denoted
£ for equality), and ones with no top-k constructs (N). As
before, there are three classes of updates: insertions (de-
noted Z), deletions (D), and modifications (M). We say
an update (query) template belongs to a particular update
(query) class if any instance of the update (query) template
belongs to the class.

For our static analysis, it is important to know whether
any instance of an update template can ever affect the re-
sult of any instance of a query template. Following the
terminology of [24], an update template U™ is ignorable
with respect to a query template Q7 if and only if no at-
tributes modified by the update template are either pre-
served by the query template, or used in the selection pred-
icate of the query template. Let G denote the set of all
such update/query template pairs, ie., (UT,Q7) € ¢ &
MUTYN(PQTYUS(QT)) = {}. For example, in the TOY-
STORE application (Table 3), update template U{ is ignor-
able with respect to query template QJ .

It is also important to know whether a query result has
any information that aids in reducing invalidations. A query
template QT is result-unhelpful with respect to an update
template U7 if and only if none of the selection attributes
of the update template are preserved by the query template.
Let H denote the set of all such update/query template
pairs, ie., (UT,QT) € H & S(WUT)n P(QT) = {}. For
example, in the TOYSTORE application (Table 3), query tem-
plate Q2 is result-unhelpful for update template U .

In Table 6, we summarize the different classes of templates
and properties of update/query template pairs.

4.2 Blind vs. Template-Inspection
(Doesa;; =17?)

Begin by considering the case in which both update and
query templates are exposed. If any instance of update
template UF could cause invalidation of cached results of
all possible instances of query template Q?, then A;; = 1.
Hence, there is no advantage to using a minimal template-
inspection strategy instead of a minimal blind strategy, i.e.,

knowledge of the query or update templates does not aid in
decreasing invalidations. For example, A11 equals 1 in the
TOYSTORE application (Table 4).

Furthermore, if A;; is greater than 0, then A;; equals 1,
ie., Aijj > 0= A;; = 1. The implication holds because
the invalidation behavior of a template-inspection strategy
is the same for all instances of an update/query template
pair. So if there exists some instance of U7 that causes
invalidation of cached results of some instance of Q;-F, then
"any’ instance of U causes invalidation of cached results of
’all’ instances of Q]T Thus, A;; either equals 0 or 1.

Lemma 1 provides the necessary and sufficient conditions
for determining if A;; equals 0.

LEMMA 1. With assumptions as in Section 2.1, invalida-
tion probability Ai; equals 0 if and only if the update tem-
plate UT is ignorable with respect to the query template QjT.
Formally, A;; =0 < (UiT,QjT> € G. Otherwise, Ajj = 1.

Proof: We omit a formal proof for brevity.

4.3 Template-Inspectionvs. Statement-Inspection

(DoesB;; = A;;?)

For a given update/query template pair, if whenever a
minimal template-inspection strategy (MTIS) evaluates to
invalidate (denoted I), a minimal statement-inspection strat-
egy (MSIS) also evaluates to I, then B;; = A;j, i.e., knowl-
edge of update and query parameters in addition to the up-
date and query template does not aid in decreasing invali-
dations. Since A;; can take only two possible values, 0 or 1,
if B;; = Aij, then either B;; = A;; =0 or B;; = A;; = 1.

Case 1 (B;; = Aj; = 0): Property 3 (Section 2.3) implies
that the equality B;; = A;; = 0 holds if and only if A;; = 0.
Furthermore, from Lemma 1, we know the necessary and
sufficient conditions for A;; being 0. Combining the two
statements, B;; = A;; = 0 holds if and only if the update
template is ignorable with respect to the query template,
ie, Bij=Ai; =0& (U, Q)) €G.

Case 2 (Bij = Aj; = 1): The equality A;; = 1 is a nec-
essary condition for B;; = A;; = 1. Using Lemma 1, the
previous statement can be rewritten as: update template
UF must not be ignorable with respect to query template
QjT for the equality B;; = Ai; = 1 to hold. This necessary
condition for B;; = A;; = 1 is however not a sufficient con-
dition since a MSIS also has knowledge of the parameters of
the update and the query statement. This knowledge may
allow the MSIS to infer that an instance of U} does not
affect the cached query result of some instance of QJT For
example, A12 = 1 but Bi2 < 1 in the TOYSTORE application
(Table 4).

However, if S(U) N S(Q]) = {}, then knowing the pa-
rameters in addition to the update and query templates
cannot aid in decreasing invalidations. Hence a sufficient
condition for B;; = A;; = 1 is: If no attribute is common
to the selection predicates of both the update and query
template, and the update template is not ignorable with
respect to the query template, then B;; = A;; = 1, i.e,
(SWUHNS@Q) =AU, Qf) ¢G) = By = Aij = 1.

4.4 Statement-Inspection vs. View-Inspection
(Doescy; = Bi;?)

For a given update/query template, if whenever a minimal

statement-inspection strategy (MSIS) evaluates to invali-

date (denoted I), a minimal view-inspection strategy (MVIS)

also evaluates to I, then C;; = B;j, i.e., knowledge of the
query result in addition to the update and query statement
does not aid in decreasing invalidations. From Property 3
(Section 2.3), Ci; < B;;. In this subsection we provide sev-
eral sufficient conditions for the equality C;; = B;; by iden-
tifying important classes of update/query pairs for which
the equality holds. For other classes, we provide an exam-
ple instance of Ul and QJT for which C;; < Bjj. Next,
we consider the three classes of updates in turn: insertions,
deletions, and modifications.

Insertions. This paragraph applies if the update is an in-
sertion. If queries are limited to SPJ queries having con-
junctive selection predicates, with equality as the join opera-
tor, augmented by optional order-by constructs, then when-
ever a MSIS evaluates to I, a MVIS also evaluates to I,
e, (U € I) AN (Q] € ENN) = Ci; = Bij. (We pro-
vide the proof in [19].) This result is our most signifi-
cant contribution in finding sufficient conditions for C;; =
B;;. For example, C23 equals Bas for the TOYSTORE ap-
plication (Table 4), as predicted by this result. However,
when the query template either has one or more of {<, <
,>,>} appearing in the join predicate (Q] ¢ &), or has
a top-k construct (Q] ¢ N), Ci; may be less than Bjj,
as illustrated when the update INSERT INTO toys (toy-id,
toy_name, qty) VALUES (15, ‘toyB’, 10) is paired with
either of the following queries:

a) SELECT tl.toy_id, tl.qty, t2.toy.id, t2.qty
FROM toys as tl1l, toys as t2
WHERE t1.toy name=‘toyA’ AND t2.toy name=‘toyB’
AND tl.qty > t2.qty

Suppose the query result has just one tuple (10, 3, 12,
2). A minimal statement-inspection strategy will inval-
idate the cached query result, since a ‘toyA’ with qty
> 10 might exist in the database. However, a mini-
mal view-invalidation strategy, with the knowledge of the
cached query result, which implies that there is no ‘toyA’
with qty > 3, will not invalidate the query result.

b

~

SELECT MAX(qty) FROM toys

Suppose the result of this top-k query is 15. A minimal
statement-inspection strategy will necessarily invalidate
the cached query result, since the current max(qty) might
be less than 10. However, a minimal view-invalidation
strategy, with the knowledge of the query result, will not
invalidate the cached query result.

Deletions. This paragraph applies if the update is a dele-
tion. If the query template is result-unhelpful with respect
to the update template, then whenever a MSIS evaluates to
invalidate (I), a MVIS also evaluates to I, i.e., (U, Q]T> €
H = Ci; = Bj;. (We provide the proof in [19].) For ex-
ample, the equalities C12 = Bi2 and Ci3 = Bis hold for the
TOYSTORE application (Table 4), as predicted by this result.
Moreover, the U{ /QT pair of the TOYSTORE application is
an example where the precondition of this result is not met
and Ci1 < Bi1.

Modifications. This paragraph applies if the update is
a modification. If either the update template is ignorable
with respect to the query template or the query template is
result-unhelpful with respect to the update template, then
whenever a MSIS evaluates to invalidate (I), a MVIS also

evaluates to I, i.e., (U, Q]) € GUH = Ci; = Bi; . (We
provide the proof in [19].)Moreover, if the precondition of
this result is not met, C;; may be less than B;j, as with the
following update/query pair:

UPDATE toys SET qty=10 WHERE toy_id=5
SELECT toy_id FROM toys WHERE qty > 100

Let the toy with toy_id=5 be absent from the cached query
result. A minimal statement-inspection strategy will nec-
essarily invalidate the cached query result, because the
cached result could contain the toy with toy_id = 5. A
minimal view-inspection strategy will not invalidate it.

4.5 Database Integrity Constraints

So far the IPM values are based on the DSSP’s (optional)
knowledge of the update statement, the query statement,
and the query result. The DSSP can further lower the
values of the invalidation probabilities A;;, B;j, and Cjj,
i.e., increase the precision of invalidation decisions, by us-
ing database integrity constraints. Database integrity con-
straints are conditions on the database that must be satisfied
at all times, i.e., all instances of the database must satisfy
the constraints. We expect the DSSP to know the basic
database integrity constraints®, and thus use them for pro-
viding greater scalability to the applications. We list two
such basic database integrity constraints below, and show,
using the TOYSTORE application (Table 3), how knowledge
of the constraints can affect values of the IPM:

1. Primary key constraint: Consider the query tem-
plate Q3. If toy_id is the primary key of the toys
relation, then the toys table cannot have more than
one tuple with the same value of toy_id. As a result,
no insertion into the toys relation affects the cached
query result of any instance of the query template Q3.

2. Foreign key constraint: Consider the query tem-
plate Q. We already assume that attribute cid of the
credit_card relation is a foreign key into customers
relation, i.e., the value of the cid attribute for any
tuple of the credit_card relation should be the same
as the value of the attribute cust_id for some tuple in
the customers relation. Further, any insertion into the
customers relation inserts a new cust_id, which can-
not join with any tuple in the credit_card relation.
As a result, no insertion into the customers relation
affects the cached query result of any instance of Q7.

For any update/query template pair, if either of the two
integrity constraints applies, A;; becomes zero. Further-
more, as Property 3 (Section 2.3) implies, if A;; = 0, then
the equality A;; = B;; = C;; = 0 holds.

5. EVALUATION

We have built a prototype DSSP to gain a better under-
standing of the magnitude of the security-scalability trade-
off, and to see how well our scalability-conscious security
design methodology works in practice. Before presenting
these results, we describe our benchmark applications in Sec-
tion 5.1, and our experimental methodology in Section 5.2.

4For all three benchmark applications that we study (details
in Section 5.1), database integrity constraints fall into the
category of insensitive data, and so revealing it to the DSSP
does not compromise security.

Number of UT /Q™ pairs for which
A=1

Application|A = B = B<A B=A
—c=o0|c<Blc=Blc<Blc=8

AUCTION 267 2 25 14 0
BBOARD 488 0 25 25 2
BOOKSTORE 405 0 22 18 3

Table 7: IPM characterization results for the three
applications. The table entries denote the number
of update/query template pairs for which particular
IPM relationships hold.

Then, in Section 5.3 we confirm that blanket encryption of
all data passing through the DSSP greatly hurts scalability.
Finally, in Section 5.4 we find that our scalability-conscious
security design methodology enables significantly greater se-
curity without impacting scalability.

5.1 Benchmark Applications

We sought Web benchmarks that make extensive use of
a the database and are representative of real-world appli-
cations. We found three publicly available benchmark ap-
plications that met these criteria: RUBIS [21], an auction
system modeled after ebay.com, RUBBoS [22], a simple
bulletin-board-like system inspired by slashdot.org, and
TPC-W [26], a transactional e-Commerce application that
captures the behavior of clients accessing an online book
store®. We used Java implementation of these applications.
We will henceforth refer to these applications as AUCTION,
BBOARD, and BOOKSTORE, respectively.

The update/query templates of these applications differ
from the assumptions outlined in Section 2.1 in one signifi-
cant way: between 7% and 11% of the query templates for
each application have aggregation or group-by constructs.
Aggregation is one of min, max, count, sum, avg, and
group-by allows application of aggregation functions to tu-
ples clustered by some attribute. Our current model does
not handle aggregation and group-by queries. For our eval-
uation, we separately consider each update/query template
pair, where the query has an aggregation or group-by con-
struct, and manually determine the behavior of each of the
four classes of minimal invalidation strategies of Section 2.2.

5.1.1 |PM Characterization Results

Table 7 summarizes the IPM characterization results for
the three applications, assuming the DSSP has knowledge of
the two types of database integrity constraints mentioned in
Section 4.5. Each row of Table 7 corresponds to an applica-
tion. The table entries denote the number of update/query
template pairs for which particular IPM relationships hold.
The first column lists the number of update/query template
(UT/Q™) pairs for which the equality A = B = C = 0

5To make the TPC-W application more representative of a
real-world bookseller, we changed the distribution of book
popularity in TPC-W from a uniform distribution to a Zipf
distribution based on the work by Brynjolfsson et al. [6].
Brynjolfsson et al. verified empirically that for the well-
known online bookstore amazon . com, the popularity of books
varies as log @ = 10.526 — 0.871log R, where R is the sales
rank of a book and @ is the number of copies of the book
sold within a short period of time.

holds. For each application, the majority of UT /QT pairs
fall in this category. For the remaining U /Q7 pairs, in-
validation probability A equals 1. These U” /QT pairs are
further divided into four categories, represented by the next
four columns of Table 7, depending on whether B < A or
B = A, and whether C' < B or C' = B. As Table 7 shows,
equalities B = A and/or C = B hold for the majority of
the template pairs. Accordingly, for these template pairs,
reducing the exposure of templates does not increase inval-
idations. Thus, the analysis presented in Section 4 applies
to the applications we studied.

5.2 Experimental Methodology

We performed our experiments with a simple two-node
configuration—a home server that runs MySQL4 [20] as
its database management system, and a DSSP node that
provides answers to database queries using its store of the
cached query results, running on Emulab [27]. (To keep
the configuration simple, the DSSP node also provided the
functionality of a CDN node, i.e., the ability to run Web
applications and to interact with a user running a Web
browser. We used Tomcat [14] to provide both function-
alities.) Cached query results were kept consistent with the
home server’s database using non-transactional invalidation
of cached query results.

The home server machine had an Intel P-III 850 MHz pro-
cessor with 512 MB of memory, while the DSSP node had
an Intel 64-bit Xeon processor with 2048 MB of memory. In
all experiments, the home server and DSSP node were con-
nected by a high latency, low bandwidth duplex link (100 ms
latency, 2 Mbps). Each client was connected to the DSSP
node by a low latency, high bandwidth duplex link (5 ms
latency, 20 Mbps). These network settings model a deploy-
ment in which a DSSP node (because there are many of
them) is “close” to the clients, most of which are “far” from
any single home server.

Since the overhead for emulating clients is low, one ad-
ditional Emulab node was used to emulate all clients. As
in the TPC-W [26] specification, clients simulate human us-
age patterns by issuing an HTTP request, waiting for the
response, and pausing for a think time of X seconds before
requesting another Web page—X is drawn from a negative
exponential distribution with a mean of seven seconds.

Each experiment ran for ten minutes, and the DSSP node
started with a cold cache each time. The database config-
uration parameters we used in our experiments and sample
update numbers for a ten minute run are listed in [19]. Scal-
ability was measured as the maximum number of users that
could be supported while keeping the response time below
two seconds for 90% of the HT'TP requests.

5.3 Magnitude of Security-Scalability
Tradeoff

Figure 8 plots the scalability of an application as a func-
tion of the invalidation strategy used by the DSSP, for all
three applications. The y-axis plots scalability, measured
as specified in Section 5.2. On the x-axis, we consider an
instance of each of the four classes of invalidation strategies
introduced in Section 2.2. (The same invalidation strat-
egy is used for all update/query template pairs.) For the
BBOARD application, in which each HT'TP request results in
about ten database requests, with the poor cache behavior
of a blind or a template inspection strategy, not even a small

Query templates:

initial o
final ——
view Moy

stmt

Exposure level

template

1 1 1

M HO

initial oo initial o
final =— final =———

1 1 1

1 7 25 28 1 8
Query Templates

Update templates:

Query Templates

20 36 1 8 22 28
Query Templates

initial monn
final ——

initial s initial e
final — final —

stmt 7
template -

Exposure level

Update Templates
(a) AUCTION

Update Templates
(b) BBOARD

15 1 3 16
Update Templates

(c) BOOKSTORE

Figure 7: Starting with the California data privacy law, additional exposure reduction for query and update

templates.
ke]
9
8 800R-
o
>
2]
4]
% 600
>
P
=2c
58
T3 400
n6
(5]
S
o 2001
o]
S
>
£
0

AUCTION BBOARD BOOKSTORE

Figure 8: Tradeoff between security and scalability,
as a function of coarse-grain invalidation strategy.

number of clients can be supported within the response time
threshold specified in Section 5.2.

For each application, the leftmost strategy, a minimal
view inspection strategy (MVIS), offers the best scalabil-
ity, but the worst security (full exposure of all data). On
the other extreme, the rightmost strategy, a minimal blind
strategy (MBS), offers the best security (full encryption of
all data), but the worst scalability. Figure 8 confirms the
claim made in Section 1 that blanket encryption of all data
(thereby requiring a blind invalidation strategy) significantly
hinders scalability.

5.4 Security Enhancement Achieved

In this section we show that for all three applications, the
static analysis step of our scalability-conscious security de-
sign methodology enables significantly greater security with-
out impacting scalability. Recall Figure 3 of Section 1.2,
which plots scalability® versus security, for a simple metric

SComputational overhead of encryption and decryption is
not taken into account. Optimizing the encryption and de-
cryption process is beyond the scope of the paper.

of security that counts the number of query templates for
which results can be encrypted. Our static analysis identifies
21 out of the 28 query templates associated with the BOOK-
STORE application, for which encrypting the results has no
impact on scalability. While encouraging, that result does
not tell the whole story. Here we examine in greater depth
the degree of security afforded by our static analysis.

As discussed in Section 3.1, the outcome of our static anal-
ysis (Step 2) depends on the initial determination of what
highly sensitive data absolutely must be encrypted (Step 1).
To make this determination, we defer to the well-known Cal-
ifornia data privacy law [7], which, when applied to our ap-
plications, mandates securing all credit card information.

Figure 7 plots the exposure levels of query and update
templates both before and after our static analysis is in-
voked. The top three graphs correspond to the query tem-
plates of each application, and the bottom three graphs cor-
respond to the update templates. The y-axis of each graph
plots the possible exposure levels for a template (low expo-
sure on the bottom; high exposure on top). The x-axis plots
the query or update templates associated with an applica-
tion, in increasing order of exposure. The dashed lines show
the initial exposure levels mandated by the California data
privacy law (only a little encryption is needed to comply);
the solid lines show the final exposure levels resulting from
the application of our static analysis. The area between
the lines gives an idea of the reduction in exposure achieved
using our approach.

Much of the data whose exposure level can be reduced due
to our static analysis turns out to be moderately sensitive,
and therefore the reduction in exposure would likely be a
welcome security enhancement. To illustrate, we supply ex-
amples of moderately sensitive data that can be encrypted:

e AUCTION application: the historical record of user bids
(i.e., user A bid B dollars on item C' at time D).

e BBOARD application: the ratings users give one another
based on the quality of their postings (i.e., user A gave
user B a rating of C).

e BOOKSTORE application: book purchase association rules

discovered by the vendor (i.e., customers who purchase
book A often also purchase book B).

In all cases scalability is not affected—it remains the same
as that of MVIS in Figure 8.

6.

SUMMARY

In this paper we explored ways to secure the data of Web
applications that use the services of a shared DSSP to meet
their database scalability needs. At the heart of the problem
is the tradeoff between security and scalability that occurs
in this framework. When updates occur, the DSSP needs to

invalidate data from its cache.

The amount of data inval-

idated varies depending on the information exposed to the
DSSP. The less information exposed to the DSSP, the more
invalidations required, and the lower the scalability.

We presented a convenient shortcut to manage the security-

scalability tradeoff. Our solution is to (statically) determine
which data can be encrypted without any impact on scala-
bility. We confirmed the effectiveness of our static analysis
method, by applying it to three realistic benchmark appli-
cations that use a prototype DSSP system we built. In all
three cases, our static analysis identified significant portions
of data that could be secured without impacting scalability.
The security-scalability tradeoff did not need to be consid-
ered for such data, significantly lightening the burden on the
application administrator managing the tradeoft.

Acknowledgments

We thank Mukesh Agrawal, Charles Garrod, Phillip B. Gib-
bons, Bradley Milan, and Haifeng Yu for their valuable feed-
back and suggestions.

7.
1]

REFERENCES

G. Aggarwal, M. Bawa, P. Ganesan,

H. Garcia-Molina, K. Kenthapadi, R. Motwani,

U. Srivastava, D. Thomas, and Y. Xu. Two can keep a
secret: A distributed architecture for secure database
services. In Proc. CIDR, 2005.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proc.
SIGMOD, 2004.

M. Altinel, C. Bornhvd, S. Krishnamurthy, C. Mohan,
H. Pirahesh, and B. Reinwald. Cache tables: Paving
the way for an adaptive database cache. In Proc.
VLDB, 2003.

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A dynamic data cache for Web
applications. In Proc. ICDE, 2003.

J. A. Blakeley, N. Coburn, and P. Larson. Updating
derived relations: Detecting irrelevant and
autonomously computable updates. ACM TODS,
14(3):369-400, 1989.

E. Brynojolfsson, M. Smith, and Y. Hu. Consumer
surplus in the digital economy: Estimating the value
of increased product variety. 2002.
http://www.heinz.cmu.edu/"mds/cs.pdf.

California Senate. Bill SB 1386. http://info.sen.ca.
gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_
bill_200%20926_chaptered.html, 2002.

8]

[9]

K. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung.
View invalidation for dynamic content caching in
multitiered architectures. In Proc. VLDB, 2002.

J. Dilley, B. Maggs, J. Parikh, H. Prokop,

R. Sitaraman, and B. Weihl. Globally distributed
content delivery. IEEFE Internet Computing,
6(5):50-58, 2002.

A. Gupta and J. A. Blakeley. Using partial
information to update materialized views. Information
Systems, 20(9):641-662, 1995.

H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra.
Executing SQL over encrypted data in the database
service provider model. In Proc. SIGMOD, 2002.

H. Hacigumus, B. Iyer, and S. Mehrotra. Providing
database as a service. In Proc. ICDE, 2002.

H. Hacigumus, B. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted
relational databases. In 9th International Conference
on Database Systems for Advanced Applications, 2004.
Jakarta Project. Apache Tomcat.

M. Kantarcioglu and C. Clifton. Security issues in
querying encrypted data. Technical Report
TR-04-013, Purdue University, 2004.

A.Y. Levy and Y. Sagiv. Queries independent of
updates. In Proc. VLDB, 1993.

W. Li, O. Po, W. Hsiung, K. S. Candan, D. Agrawal,
Y. Akca, and K. Taniguchi. CachePortal II:
Acceleration of very large scale data center-hosted
database-driven web applications. In Proc. VLDB,
2003.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,
H. Woo, B. G. Lindsay, and J. F. Naughton.
Middle-tier database caching for e-business. In Proc.
SIGMOD, 2002.

A. Manjhi, A. Ailamaki, B. M. Maggs, T. C. Mowry,
C. Olston, and A. Tomasic. Simultaneous scalability
and security for data-intensive Web applications.
Technical Report CMU-CS-06-116, Carnegie Mellon
University, March 2006, http://www.cs.cmu.edu/
"manjhi/scalabilitySecurity.pdf.

MySQL AB. MySQL database server.

ObjectWeb Consortium. Rice University bidding
system. http://rubis.objectweb.org/.

ObjectWeb Consortium. Rice University bulletin
board system. http://rubbos.objectweb.org/.

C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M.
Maggs, and T. C. Mowry. A scalability service for
dynamic web applications. In Proc. CIDR, 2005.

D. Quass, A. Gupta, I. S. Mumick, and J. Widom.
Making views self-maintainable for data warehousing.
In Proc. Fourth International Conference on Parallel
and Distributed Information Systems, 1996.

The Washington Post. Advertiser charged in massive
database theft. http://www.washingtonpost.com/
wp-dyn/articles/A4364-2004Jul21.html, July, 2004.
Transaction Processing Council. TPC-W, version 1.7.
B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. OSDI,
2002.

