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ABSTRACT Given two finite sequences, we wish to find
the longest common subsequences satisfying certain de-
letion/insertion constraints. Consider two successive
terms in the desired subsequence. The distance between
their positions must be the same in the two original se-
quences for all but a limited number of such pairs of suc-
cessive terms. Needleman and Wunsch gave an algorithm
for finding longest common subsequences without con-
straints. This is improved from the viewpoint of com-
putational economy. An economical algorithm is then
elaborated for finding subsequences satisfying deletion/
insertion constraints. This result is useful in the study of
genetic homology based on nucleotide or amino-acid
sequences.

A problem that arises in the study of evolution at the molec-
ular level (1-4) is to find correspondences between two finite
sequences. In its most basic form, the problem is simply to
find the longest common subsequence of two sequences.
This is termed a best match.

Definition. Let a}ail' = (al, *--, an) and {bijl = (bi,
b.) be two sequences of elements from a finite set S. A

match between {ail and I bil} is any set M of pairs (i,j)
E {1,I *, m} X {1,1 , n} such that for all distinct (ij)
EM, (k,l)EM, either

i<k
OR (1)

j < I} . >1g(1
The value of M is the number of pairs (ij) E M such that
a; = bi. A best match is a match with maximum value. A path
P to (ij) is a match in which (ij) is the pair with highest
coordinates.

In genetics, the set S may be the set of amino acids that
constitute protein (1), or IA,C,G,U}, the set of nucleotides
found in RNA (5). Construction of matches that satisfy
various criteria is the first step in one approach to a deter-
mination of the genetic relationship of two types of organism.
For m and n equal to 10 or 15, the best match is usually
obvious. For the values of m and n of interest in genetics
(around 100), however, or to find matches that are not nec-
essarily best, but satisfy some other correspondence criterion,
any trial and error method becomes impossibly tedious.
Needleman and Wunsch (1) were the first to discover an
efficient way to find best matches and matches maximizing
certain other criteria. This note describes a new algorithm
designed to find matches of the highest value that satisfy
constraints important in genetics.
Let 5(aj,bj) = 1 if ai = b, and 5(ai,b,) = 0 otherwise.

Following Needleman and Wunsch, for sequences {ai l

and {bi4 we define a matrix V where V(i,j) is the highest
value possible for a path to (ij). Making the convention

V(iO) = V(0,j) = 0

foralliC {o,. . .,mJjCE {O,. n),.
we have

V(ij) = maximum V(h,k) + 5(ai,bj)
h <i-1
k <j-1

(2)

(3)

since a highest value path to (ij) must contain (ij), as well as
the pairs of some highest value path to some pair (hk), where
both h < i - 1 and k < j - 1. Then the best match be-
tween I a} ' and { b} ' will have value

v = maximum V(h,k). (4)
h<m
k <n

This tells us the number of pairs in any best match. To
actually construct a best match, proceed as follows. First find
an (ij) such that as = bi, and V(ij) = v, which must be pos-
sible by (2), (3), and (4) as long as v > 0. Then by (3), within
{1*... i - 1} X {i,.I ,j- 1} there must be an (h,k) such
that aj = bk and V(h,k) = v - 1. If we continue in this way,
the set of pairs (ij), (h,k),--- so constructed satisfies (1)
and so is a match. The algorithm will stop only after it
produces a (gl) such that a, = b and V(g,l) = 1, which will be
the vth pair to be found. Therefore, we have constructed a
best match.

In actual computation, it is more economical to calculate
and store, instead of V, the matrix

W(ij) = maximum V(h,k)
h <i
k <j

= max {W(i - lj),W(ij - 1),W(i - 1,j - 1)
+ a (aib,)}-

In this way we assure that in construction of the matrix,
the number of search steps and arithmetic steps is propor-
tional to mn. After construction of the matrix (either V or W),
if the search for the v pairs for M satisfying (1) is started
at position (m,n) and proceeds backwards along the mth
row, then the (m - 1)st, and so on, no position need be
examined more than once. As soon as a pair (ij) is found,
the rest of the search is confined to {I1,.*i - 1} X I1,***,
j - 1}. Therefore the whole algorithm, including both matrix
construction and search, can proceed in time proportional to
mn.

4



Constraints on Matching Sequences 5

Example

We calculate V and W for the two sequences AGCCAU and
CCAGUCU, as depicted in (5).

V

bi
\IO

C C A G U C U
1 2 3 4 5 6 7

o 0 0 0 0 0 0 0
o 0 0 1 0 0 0 0
o o 0 0 2 1 1 1
0 1 1 0 1 2 3 2
0 1 2 1 1 2 3 3

I 0 0 1 3 2 2 2 3
o o 1 2 3 4 3 4

by C C A G U C U
j 0 1 2 3 4 5 6 7

O 0 0 0 0

O 0 0 1 1
0 0 0 1 2
0 1 1 1 2
0 1 2 2 2
0 1 2 3 3
0 0 1 2 3

and

V,(ij) = maximum {Vq(i- kj - k),Vq_ (i - gj -)
O<k<i,O<k<j
O<g<i,O<h<j

+ a(ai,bj)
= maximum {Vqi(i- 1lj - h),Vq(i - 1,j- 1),

O<g<i
O<h<j

Vqgi(i- g.j - 1)} + 8(aibj) (6c)

for all i E {I,- --,m}, j E 11 .. ,n} and q E {1,2,1..}.
A best match M satisfying DI(M) . q will have value

v, = maximum Vq(hk).
O<h <m
O<k <n

(5)

0 0 0

1 1 1
2 2 2
2 3 3
2 3 3
3 3 3
4 3 4

One best match for these sequences consists of pairs that are

coordinates of boldface entries in (5); another is indicated by
italic entries.

Definition. Let M be a match between two sequences. The
deletion/insertion (DI) index ofM is the number of successive
pairs of pairs (ij), (k,l) E M such that k - i 1 - j.
As noted in (1), (5), and elsewhere, a match with a low DI

index may seem to a geneticist to be a better indication of
similarity than a match that has higher value, but also suffers
from a higher DI index. Therefore we would like for q > 0, to
find the best match M between { ail}. and {bi4 under the
constraint that DI(M) < q.
Such constraints cannot be incorporated in the Needleman

and Wunsch method by means of some combination of their
"cell weights" and "gap penalties." It is possible to elaborate
a suitable algorithm, however, by use of the fact that a path P
to (ij) with DI(P) < q is the union of I (i,j)} with either
(1) a path PI to (i - k,j -k), where 0 < k < min{ij}, with
DI(P1) < q, or (2) a path P2 to (i - gj- h), where 0 <
g<iand0 <h <j,withDI(P2) < q -1.
We will construct matrices Vq for q = 1, where

Vq,(ij) is the highest value possible for a path P to (ij)
satisfying DI (P) < q. As in (2), we define

V9(i,O) = Vq(Oj) = 0 (6a)

for al i {,I...,m},j, {0,-I ,n} andqa {0,1,d...
Then

(7)

Now that we have vQ, we can find a suitable match. First
find a pair (ij) satisfying at = b6 and

Vq(ij) = Vq.

Such a pair exists by (6) and (7), as long as Vq > 0. By (6c)
it is clear that if

Vq(i- 1,j- 1) # Vq - 1

then

maximum Vq..i~ - g,j - h) = vq- 1
O< <i-1
O<h <j-1

and we are in the same situation as after (7), i.e., we have
completed the first step of the algorithm.

Otherwise, for some positive k < min {ij} we have

Vq(i - 1,j - 1) = V -6(aibj) = Vq- 1
Vq(i - 2,j - 2) = Vq,-, (ai,bi) - (aj-,bj)

k-1

V2 (i - k,j - k) = v,,- E a(abj-.)
X=O

but

V,(i - k - 1,j - k - 1) < Vq- E a(ai-zbj-.).
x=O

k-1
Then there are E b(ai_,b,-.) pairs for our match on the

XdO

matrix diagonal between (i,j) and (i - kj -k), inclusive.
To find the next pair, we must invoke (6c) again to assert

k-i
maximum Vq-1(i - gj - h) = vq- E a(ai_ ,bj-.),
O<g<i-k X=0
O<h<j-k

which completes the first cycle of the algorithm [i.e., return
to (7)]. By the definition of V,, the algorithm will stop only
after Vq pairs have been found.

In a manner analogous to the unconstrained best-match
case, it is possible to make this procedure more efficient by
introduction of the matrices

We(iJj) = max {Wq(i- 1,j), V(ij), Wq(ij - 1) }

a, i
0

A 1
G 2
C 3
C 4
A 5
U 6

ai

A
G
C

C

A
U

0
1
2
3
4
5
6
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Vo(iji) = Vo(i - 11i 1) + S(aibj) (6b)
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forq = 0,1,--,sothat

Vq(ij) = max { Vq(i- 1,j - 1),
Wq-(i- 1,j - 1)} + S(aibj)

for q = 1,2,... Then for each successive q, the matrix Vq
can be constructed in "computer time" proportional to mn
from Wqi,, and Wq can be constructed from Vq in similar
time. A search strategy similar to the one we used in the
best-match case will assure that no pair (ij) need be searched
more than once, so that the total number of computations
to find best matches under all possible DI constraints is
mnqma,, where q,. is usually much less than m or n. To
find q,,1, we first calculate v for unconstrained best matches,
and the minimum q for which vq = v is qmax.

Example

For q > 1, the matrices Vq and Wq are just V and W, re-
spectively, as shown in (5). The best matches with DI index
equal to one are just the unconstrained best matches as in
(5). The best matches with zero DI indices consist of the first
three pairs of each unconstrained best match.
The advantage of this method over that of Needleman and

Wunsch, as well as others that have been published, is that it
does not depend on any arbitrarily imposed numerical cri-
teria such as cell weights, but on a genetically meaningful
criterion, the DI index. Further, this algorithm can be used
as the basis for statistically testing hypotheses not only about
the similarity of two sequences, but also about the number
of deletions and insertions separating them (6).

I thank R. J. Cedergren for introducing me to this problem.
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A 1
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C 3
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A 5
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